【題目】如圖,在ABCD中,點(diǎn)E是DC的中點(diǎn),連接AE,并延長交BC的延長線于點(diǎn)F.
(1)求證:△ADE和△CEF的面積相等
(2)若AB=2AD,試說明AF恰好是∠BAD的平分線
【答案】
(1)
證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAE=∠F,
∵點(diǎn)E是DC的中點(diǎn),
∴CE=DE,
在△AED和△FEC
,
∴△AED≌△FEC(AAS),
∴△ADE和△CEF的面積相等
(2)
證明∵四邊形ABCD是平行四邊形,
∴AD=BC,
∵△AED≌△FEC,
∴AD=CF,
∴AD=BC=CF,
∵AB=2AD,
∴AB=2BC=BF,
∴∠BAF=∠F,
又∵∠DAE=∠F,
∴∠BAF=∠DAE,
即AF是∠BAD的平分線.
【解析】(1)首先根據(jù)平行四邊形的性質(zhì)可得AD∥BC,根據(jù)平行線的性質(zhì)可得∠DAE=∠F,然后再證明△AED≌△FEC可得結(jié)論;
(2)首先根據(jù)平行四邊形的性質(zhì)可得AD=BC,根據(jù)全等三角形的性質(zhì)可得AD=CF,然后再證明AB=BF,進(jìn)而可得∠BAF=∠F,再由∠DAE=∠F,可得∠BAF=∠DAE,進(jìn)而可得AF恰好是∠BAD的平分線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:
將1到(,且為正整數(shù))一共個連續(xù)正整數(shù)按從小到大的順序排成一排,每相鄰的兩個數(shù)之間放置一個方格.
(1)一共需要放置____個方格;
(2)如果第一個方格填入加號“+”,第二個方格填入減號“—”,第三個方格填入加號“+”, 第四個方格填入減號“—”,…,按此規(guī)律輪流將加、減號從左向右依次填入方格中,問最后一個方格應(yīng)填入什么符號?
(3)按照(2)中的方法我們用加、減號將1到一共個連續(xù)正整數(shù)連接成一個算式,問這個算式的值等于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D為邊BC的中點(diǎn),以AD為邊作等邊△ADE,連接BE.求證:BE=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) A、B 在數(shù)軸上表示的數(shù)分別為﹣12 和 8,兩只螞蟻 M、N 分別 從 A、B 兩點(diǎn)同時出發(fā),相向而行.M 的速度為 2 個單位長度/秒,N 的速度為 3 個單位長度/秒.
(1)運(yùn)動 秒鐘時,兩只螞蟻相遇在點(diǎn) P;點(diǎn) P 在數(shù)軸上表示的數(shù) 是 ;
(2)若運(yùn)動 t 秒鐘時,兩只螞蟻的距離為 10,求出 t 的值(寫出解題過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A. 7a+a=7a2 B. a2·a3=a6 C. a3÷a=a2 D. (ab)2=ab2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小方格紙上按下面的方式涂色:
① ② ③ ④
(1)填表:
圖形編號 | ① | ② | ③ | ④ | ⑤ | ⑥ |
涂色的小方格數(shù) |
(2)像這樣,第 n 個圖形要涂色的小方格數(shù)是__________,第100個圖形要涂色的小方格數(shù)是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.
當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時,不妨設(shè)點(diǎn)A在原點(diǎn).
如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時,
如圖2,點(diǎn)A、B都在原點(diǎn)的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;
回答下列問題:
(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是_______;
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離是___________,如果∣AB∣=2,那么x為____________;
(3)當(dāng)代數(shù)式∣x+1∣+∣x-2∣取最小值時,相應(yīng)的x的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A、B兩點(diǎn)的俯角分別為45°、30°,如果此時熱氣球C處離地面的高度CD為100米,且點(diǎn)A、D、B在同一直線上,求AB兩點(diǎn)間的距離(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com