【題目】甲、乙兩人在一次射擊比賽中各射靶5次,兩人成績的條形統(tǒng)計圖如圖所示,則下列說法正確的是( 。
A.甲的成績的平均數(shù)小于乙的成績的平均數(shù)
B.甲的成績的中位數(shù)等于乙的成績的中位數(shù)
C.甲的成績的極差小于乙的成績的極差
D.甲的成績的方差小于乙的成績的方差
【答案】D
【解析】
計算甲乙的平均數(shù)可對A進行判斷;計算甲乙的中位數(shù)可對B進行判斷;計算甲乙的極差可對C進行判斷;利用甲乙的成績的波動大小可對D進行判斷.
解:A、甲的成績的平均數(shù)=(4+5+6+7+8)=6(環(huán)),乙的成績的平均數(shù)=(3×5+6+9)=6(環(huán)),所以A選項錯誤;
B、甲的成績的中位數(shù)為6環(huán).乙的成績的中位數(shù)為5環(huán),所以B選項錯誤;
C、甲的成績的極差為4環(huán),乙的成績的極差為4環(huán);所以C選項錯誤;
D、甲的成績波動比乙成績的波動小,所以甲的成績的方差小于乙的成績的方差,所以D選項正確.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣3ax﹣4a的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C(0,﹣3).
(1)求二次函數(shù)的表達式及點A、點B的坐標;
(2)若點D在二次函數(shù)圖象上,且,求點D的橫坐標;
(3)將直線BC向下平移,與二次函數(shù)圖象交于M,N兩點(M在N左側(cè)),如圖2,過M作ME∥y軸,與直線BC交于點E,過N作NF∥y軸,與直線BC交于點F,當MN+ME的值最大時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E,F分別在邊AC,BC上),給出以下判斷:①當CD⊥AB時,EF為△ABC的中位線;②當四邊形CEDF為矩形時,AC=BC;③當點D為AB的中點時,△CEF與△ABC相似;④當△CEF與△ABC相似時,點D為AB的中點.其中正確的是_____(把所有正確的結(jié)論的序號都填在橫線上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班全體同學根據(jù)自己的愛好參加了六個興趣小組(每個學生必須參加且只參加一個),為了了解學生參加興趣小組的情況,班主任參加各個興趣小組的人數(shù)進行了統(tǒng)計,繪制成了如圖不完整的扇形統(tǒng)計圖,已知參加“足球”小組的學生有7人,請解答下列問題:
(1)九(1)班共有 名學生;
(2)若該班參加“吉他”小組與“街舞”小組的人數(shù)相同,請你計算,“吉他”小組對應扇形的圓心角的度數(shù);
(3)若“足球”興趣小組7個同學編號為1,2,3,4,5,6,7,把這些號碼制成大小相同的號碼球,放到A、B、C三個口袋中,A口袋中裝有1,2,3三個號碼球,B口袋中裝4,5兩個號碼球,C口袋中裝6,7兩個號碼球,從三個口袋中各隨機取出1個球,請用列表法或樹狀圖求取出的3個號碼球都是奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市計劃在十二年內(nèi)通過公租房建設,解決低收入人群的住房問題.已知前7年,每年竣工投入使用的公租房面積y(單位:百萬平方米)與時間x(第x年)的關(guān)系構(gòu)成一次函數(shù)(1≤x≤7且x為整數(shù)),且第一和第三年竣工投入使用的公租房面積分別為和百萬平方米;后5年每年竣工投入使用的公租房面積y(單位:百萬平方米)與時間x(第x年)的關(guān)系是y=﹣x+(7<x≤12且x為整數(shù)).
(1)已知第6年竣工投入使用的公租房面積可解決20萬人的住房問題,如果人均住房面積,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面積可解決多少萬人的住房問題?
(2)受物價上漲等因素的影響,已知這12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此類推,分析說明每平方米的年租金和時間能否構(gòu)成函數(shù),如果能,直接寫出函數(shù)解析式;
(3)在(2)的條件下,假設每年的公租房當年全部出租完,寫出這12年中每年竣工投入使用的公租房的年租金W關(guān)于時間x的函數(shù)解析式,并求出W的最大值(單位:億元).如果在W取得最大值的這一年,老張租用了58m2的房子,計算老張這一年應交付的租金.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進行檢查,并且每個小區(qū)不重復檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級數(shù)學興趣小組在探究相似多邊形問題時,他們提出了下面兩個觀點:
觀點一:將外面大三角形按圖1的方式向內(nèi)縮小,得到新三角形,它們對應的邊間距都為,則新三角形與原三角形相似.
觀點二:將鄰邊為和的矩形按圖2方式向內(nèi)縮小,得到新的矩形,它們對應的邊間距都為,則新矩形與原矩形相似.
請回答下列問題:
(1)你認為上述兩個觀點是否正確?請說明理由.
(2)如圖3,已知,,,,將按圖3的方式向外擴張,得到,它們對應的邊間距都為,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com