【題目】A、B兩地相距20km,B在A的北偏東45°方向上,一森林保護(hù)中心P在A的北偏東30°和B的正西方向上,現(xiàn)計(jì)劃修建的一條高速公路將經(jīng)過AB(線段),已知森林保護(hù)區(qū)的范圍在以點(diǎn)P為圓心,半徑為4km的圓形區(qū)域內(nèi),請(qǐng)問這條高速公路會(huì)不會(huì)穿越保護(hù)區(qū)?為什么?(sin15°=0.259,cos15°=0.966,tan15°=0.268)
【答案】解:延長(zhǎng)BP作BC⊥AC于C,過P作PM⊥AB于M.
因?yàn)锽在A的北偏東45°方向上,
所以A在B的南偏西45°方向.
在Rt△ABC中,
∵∠CBA=∠CAB=45°,
∴AC=BC=10 .
在直角△PCA中,
∠PAC=30°,則PC= ,
∴PB=10 ﹣ ,
在直角△PMB中,
PM=(10 ﹣ )× =10﹣ ≈4.226.
∵4.226>4,
∴這條高速鐵路不會(huì)穿越保護(hù)區(qū).
【解析】過P作PM⊥AB于M,延長(zhǎng)BP作BC⊥AC于C.在直角△APC中,運(yùn)用三角函數(shù)用求出AC,BC的長(zhǎng).在直角△PCA中,運(yùn)用三角函數(shù)求出PC的長(zhǎng),從而得到PB的長(zhǎng).在直角△PMB中,運(yùn)用三角函數(shù)求出PM,比較PM與4km的大小關(guān)系即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用關(guān)于方向角問題的相關(guān)知識(shí)可以得到問題的答案,需要掌握指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC邊長(zhǎng)為2,四邊形DEFG是平行四邊形,DG=2,DE=3,∠GDE=60°,BC和DE在同一條直線上,且點(diǎn)C與點(diǎn)D重合,現(xiàn)將△ABC沿D→E的方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)B與點(diǎn)E重合時(shí)停止,則在這個(gè)運(yùn)動(dòng)過程中,△ABC與四邊形DEFG的重合部分的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示,對(duì)于下列說法:①abc<0;②當(dāng)-1<x<3時(shí),y>0;③a-b+c<0;④3a+c<0.其中正確的是________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示,則下列式子中錯(cuò)誤的是( )
A. a+b<0 B. a-b<0
C. -a<-b D. |a-b|=b-a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(-2,0),等邊三角形AOC經(jīng)過平移或軸對(duì)稱或旋轉(zhuǎn)對(duì)稱都可以得到△OBD。
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是 個(gè)單位長(zhǎng)度;△AOC與△OBD關(guān)于直線對(duì)稱,則對(duì)稱軸是 ;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OBD,則旋轉(zhuǎn)角可以是 度;
(2)連接AD,交OC于點(diǎn)E,求∠AEO的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】基本模型:如圖1,點(diǎn)A,F(xiàn),B在同一直線上,若∠A=∠B=∠EFC=90°,易得△AFE~△BCF.
(1)模型拓展:如圖2,點(diǎn)A,F(xiàn),B在同一直線上,若∠A=∠B=∠EFC,求證:△AFE~△BCF;
(2)拓展應(yīng)用:如圖3,AB是半圓⊙O的直徑,弦長(zhǎng)AC=BC=4 ,E,F(xiàn)分別是AC,AB上的一點(diǎn),若∠CFE=45°,若設(shè)AE=y,BF=x,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店,甲種筆記本標(biāo)價(jià)每本8元,乙種筆記本標(biāo)價(jià)每本5元
(1)兩種筆記本各銷售了多少?
(2)所得銷售款可能是660元嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問題
(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?
(2)甲、乙兩家商場(chǎng)同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定: 這兩種商品都打九折;乙商場(chǎng)規(guī)定:買一個(gè)暖瓶贈(zèng)送一個(gè)水杯。若某單位想要買4個(gè)暖瓶和15個(gè)水杯,請(qǐng)問選擇哪家商場(chǎng)購(gòu)買更合算,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時(shí),函數(shù)圖象過點(diǎn)(﹣1,1)
B.當(dāng)a=﹣2時(shí),函數(shù)圖象與x軸沒有交點(diǎn)
C.若a>0,則當(dāng)x≥1時(shí),y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時(shí),y隨x的增大而增大
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com