【題目】南寧海吉星水果批發(fā)市場(chǎng)李大姐家的水果店銷售三華李,根據(jù)前段時(shí)間的銷售經(jīng)驗(yàn),每天的售價(jià)(元/箱)與銷售量(箱)有如表關(guān)系,且已知 x 之間的函數(shù)關(guān)系是一次函數(shù).

每箱售價(jià)x(元)

68

67

66

65

40

每天銷量y(箱)

40

45

50

55

180

1)求y x的函數(shù)解析式;

2)三華李的進(jìn)價(jià)是 40 /箱,如果設(shè)每天獲得的盈利為 元,要使該店每天獲得最大盈利,則每箱售價(jià)多少元?

34 月份(按 30 天算)連續(xù)陰雨,銷售量減少.該店決定采取降價(jià)銷售,故在(2)的條件下銷售了 18 天之后,三華李開始降價(jià),售價(jià)比之前下降了,同時(shí)三華李的進(jìn)價(jià)降為 29 /箱,銷售量也因此比原來(lái)每天獲得最大盈利時(shí)上漲了,降價(jià)銷售了 12 天的三華李銷售總盈利比降價(jià)銷售前的銷售總盈利少 5670 元,求的值.

【答案】1;(2)最大值為1620 元,此時(shí)的售價(jià)為 58 元;(325

【解析】

1)直接利用待定系數(shù)法求出一次函數(shù)解析式進(jìn)而得出答案;

2)直接根據(jù)題意表示每箱的利潤(rùn)進(jìn)而得出總利潤(rùn)等式求出答案;

3)根據(jù)題意分別表示出降價(jià)前后的利潤(rùn)進(jìn)而得出等式求出答案.

解:(1)設(shè) 之間的函數(shù)關(guān)系式為: ,

依題意,得

解得:,

之間的函數(shù)關(guān)系式為: ;

2)由題意得:

有最大值,為 1620 元. 此時(shí)的售價(jià)為 58 元;

3)在(2)的條件下,當(dāng) 時(shí), ,

依題意得

解得:, (舍去),

的值為25.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC90°,點(diǎn)FBC邊上,過AB,F三點(diǎn)的⊙OAC于另一點(diǎn)D,作直徑AE,連結(jié)EF并延長(zhǎng)交AC于點(diǎn)G,連結(jié)BE,BD,四邊形BDGE是平行四邊形.

1)求證:ABBF

2)當(dāng)FBC的中點(diǎn),且AC3時(shí),求⊙O的直徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】博文書店舉行購(gòu)書優(yōu)惠活動(dòng):

①一次性購(gòu)書不超過100元,不享受打折優(yōu)惠;

②一次性購(gòu)書超過100元但不超過200元一律打九折;

③一次性購(gòu)書200元以上一律打七折.

小麗在這次活動(dòng)中,兩次購(gòu)書總共付款229.4元,第二次購(gòu)書原價(jià)是第一次購(gòu)書原價(jià)的3倍,那么小麗這兩次購(gòu)書原價(jià)的總和是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠B90°,BC6,AD3,∠DCB30°,點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為x0x6).

1)點(diǎn)G在四邊形ABCD的邊上時(shí),x   ;點(diǎn)F與點(diǎn)C重合時(shí),x   ;

2)求出使△DFC成為等腰三角形的x的值;

3)求△EFG與四邊形ABCD重疊部分的面積yx之間的函數(shù)關(guān)系式,并直接寫出y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)A,B,CO上的三點(diǎn),以AB,BC為鄰邊作ABCD,延長(zhǎng)AD,交O于點(diǎn)E,過點(diǎn)ACE的平行線,交CD的延長(zhǎng)線于F

1)求證:FDFA;

2)如圖2,連接AC,若∠F40°,且AF恰好是O的切線,求∠CAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),且與雙曲線的一個(gè)交點(diǎn)為,將直線軸下方的部分沿軸翻折,得到一個(gè)“”形折線的新函數(shù).若點(diǎn)是線段上一動(dòng)點(diǎn)(不包括端點(diǎn)),過點(diǎn)軸的平行線,與新函數(shù)交于另一點(diǎn),與雙曲線交于點(diǎn)

1)若點(diǎn)的橫坐標(biāo)為,求的面積;(用含的式子表示)

2)探索:在點(diǎn)的運(yùn)動(dòng)過程中,四邊形能否為平行四邊形?若能,求出此時(shí)點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是邊長(zhǎng)為1的正方形ABCD的對(duì)角線,BE平分∠DBCDC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G.

(1)求證:△BCE≌△DCF;

(2)求CF的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C=90°,點(diǎn)A、B∠C的兩邊上,CA=30,CB=20,連結(jié)AB.點(diǎn)P從點(diǎn)B出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿BC方向運(yùn)動(dòng),到點(diǎn)C停止.當(dāng)點(diǎn)PBC兩點(diǎn)不重合時(shí),作PD⊥BCABD,作DE⊥ACEF為射線CB上一點(diǎn),且∠CEF=∠ABC.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(秒).

1)用含有x的代數(shù)式表示CE的長(zhǎng);

2)求點(diǎn)F與點(diǎn)B重合時(shí)x的值;

3)當(dāng)點(diǎn)F在線段CB上時(shí),設(shè)四邊形DECP與四邊形DEFB重疊部分圖形的面積為y(平方單位).求yx之間的函數(shù)關(guān)系式;

4)當(dāng)x為某個(gè)值時(shí),沿PD將以D、EF、B為頂點(diǎn)的四邊形剪開,得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無(wú)縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合上述條件的x值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游樂園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.

(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;

(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?

(3)經(jīng)檢修評(píng)估,游樂園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案