【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合,則∠OEC為度.

【答案】108
【解析】解:如圖,連接OB、OC,
∵∠BAC=54°,AO為∠BAC的平分線,
∴∠BAO= ∠BAC= ×54°=27°,
又∵AB=AC,
∴∠ABC= (180°﹣∠BAC)= (180°﹣54°)=63°,
∵DO是AB的垂直平分線,
∴OA=OB,
∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,
∵AO為∠BAC的平分線,AB=AC,
∴△AOB≌△AOC(SAS),
∴OB=OC,
∴點O在BC的垂直平分線上,
又∵DO是AB的垂直平分線,
∴點O是△ABC的外心,
∴∠OCB=∠OBC=36°,
∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.
故答案為:108.

連接OB、OC,根據(jù)角平分線的定義求出∠BAO,根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得OA=OB,根據(jù)等邊對等角可得∠ABO=∠BAO,再求出∠OBC,然后判斷出點O是△ABC的外心,根據(jù)三角形外心的性質(zhì)可得OB=OC,再根據(jù)等邊對等角求出∠OCB=∠OBC,根據(jù)翻折的性質(zhì)可得OE=CE,然后根據(jù)等邊對等角求出∠COE,再利用三角形的內(nèi)角和定理列式計算即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a=(﹣ 2、b=(﹣2014)0、c=(﹣ 1 , 那么a、b、c的大小關(guān)系為(
A.a>b>c
B.a>c>b
C.c>b>a
D.c>a>b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=m是方程x2-2x-3=0的根,則代數(shù)式2m2-4m-3的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點P(3,2)向右平移2個單位,所得的點的坐標(biāo)是(  )
A.(1,2)
B.(3,0)
C.(3,4)
D.(5,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為C1,﹣2),直線y=kx+m與拋物線交于A、B來兩點,其中A點在x軸的正半軸上,且OA=3,B點在y軸上,點P為線段AB上的一個動點(點P與點A、B不重合),過點P且垂直于x軸的直線與這條拋物線交于點E

1)求直線AB的解析式.

2)設(shè)點P的橫坐標(biāo)為x,求點E的坐標(biāo)(用含x的代數(shù)式表示).

3)求ABE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,AE平分∠BAD,CD與AE相交于F,∠3=∠4,求證:∠5=∠6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程x2﹣(2m1x+m2m20

⑴不解方程,判別方程根的情況;

⑵若方程有一個根為1,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出一個解集為x<-1,且未知數(shù)的系數(shù)為2的一元一次不等式:__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,以對角線AC為一邊作菱形AEFC,則∠FAB等于(

A.22.5°
B.45°
C.30°
D.135°

查看答案和解析>>

同步練習(xí)冊答案