【題目】為增強(qiáng)居民節(jié)約用水意識(shí),某市在2018年開始對供水范圍內(nèi)的居民用水實(shí)行“階梯收費(fèi)”,具體收費(fèi)標(biāo)準(zhǔn)如下表:

某戶居民四月份用水10 m3時(shí),繳納水費(fèi)23元.

(1) a的值;

(2) 若該戶居民五月份所繳水費(fèi)為71元,求該戶居民五月份的用水量.

【答案】(1)a的值為2.3;(2)該用戶居民五月份的用水量為28 m3.

【解析】

(1)四月份用水10 m3<22 m3,故單價(jià)為a/m.根據(jù)繳納水費(fèi)為23,列出關(guān)于a的方程,即可求出a的值;

(2)當(dāng)用水量為22 m3時(shí),水費(fèi)為22×2.3=50.6<71,故五月份用水量超過22 m3;

設(shè)五月份用水量為xm3,前22m3的部分,水費(fèi)為22×2.3,超過22m3的水為(x-22)m3,根據(jù)五月份所繳水費(fèi)為71列出關(guān)于x的方程,求出x的值即為五月份用水量.

(1) 由題意,10a=23,解得a=,即a的值為

(2) 設(shè)用戶用水量為x m3,因?yàn)橛盟?/span>22 m3時(shí),水費(fèi)為22×2.3=50.6()<71元,

所以x>22,

所以

解得x=28.

答:該用戶居民五月份的用水量為28 m3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC,CEAB,垂足分別為D,E,AD,CE交于點(diǎn)F.請你添加一個(gè)適當(dāng)?shù)臈l件,使△AEF≌△CEB.添加的條件是____________(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC三個(gè)內(nèi)角的平分線交于點(diǎn)O,點(diǎn)D在CA的延長線上,且DC=BC,AD=AO,若BAC=80°,則BCA的度數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y= x2﹣3x+4,
(1)配方成y=a(x﹣h)2+k的形式.
(2)求出它的圖象的頂點(diǎn)坐標(biāo)和對稱軸.
(3)求出函數(shù)的最大或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【背景知識(shí)】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié) 合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn) A、點(diǎn) B 表示的數(shù)分別為 a、b,則A、B 兩點(diǎn)之間的距離 AB= ,線段 AB 的中點(diǎn)表示的數(shù)為 .

【問題情境】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為-2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn) A 出發(fā), 以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒 2個(gè)單 位長度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0).

【綜合運(yùn)用】(1) 填空:

①A、B兩點(diǎn)之間的距離AB=__________,線段AB的中點(diǎn)表示的數(shù)為_______;

②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為_______;點(diǎn)Q表示的數(shù)為_____.

(2) 求當(dāng)t為何值時(shí),P、Q 兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);

(3)求當(dāng)t為何值時(shí),PQ=AB;

(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn) P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā) 生變化?若變化,請說明理由;若不變,請求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于點(diǎn)B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,若tan∠ABO= ,OB=4,OE=2,點(diǎn)D的坐標(biāo)為(6,m).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小李某天下午的營運(yùn)全是在東西走向的人民大街上進(jìn)行的.如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍蹋▎挝唬呵祝┤缦拢?/span>,,,,,,,

人民大街總長不小于________千米;

將最后一名乘客送往目的地時(shí),小李距離下午出車時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?

若出租車耗油量為每千米升,這天下午小李共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正確的個(gè)數(shù)是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)).有下列結(jié)論: ①當(dāng)x=3時(shí),y=0;
②3a+b>0;
③﹣1≤a≤﹣ ;
≤n≤4.
其中正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案