【題目】如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點C順時針旋轉(zhuǎn)α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點D,過點D作DE∥A′B′交CB′于點E,連接BE.易知,在旋轉(zhuǎn)過程中,△BDE為直角三角形.設(shè)BC=1,AD=x,△BDE的面積為S.
(1)當α=30°時,求x的值.
(2)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點E為圓心,BE為半徑作⊙E,當S=時,判斷⊙E與A′C的位置關(guān)系,并求相應(yīng)的tanα值.
【答案】(1)x=1;(2)S= ;(3)
【解析】
(1)根據(jù)等腰三角形的判定, ∠A=∠a=30°,得出 x=1.(2)由直角三角形的性質(zhì),AB=2,AC=,由旋轉(zhuǎn)性質(zhì)求得△ADC∽△BEC,根據(jù)比例關(guān)系式,求出S與x的函數(shù)關(guān)系式.(3)當s=s△ABC時,求得x的值,判斷⊙E和DE的長度大小,確定⊙E與A′C的位置關(guān)系,再求tanα值.
解:(1)∵∠A=∠a=30°,
又∵∠ACB=90°,
∴∠ABC=∠BCD=60°.
∴AD=BD=BC=1.
∴x=1;
(2)∵∠DBE=90°,∠ABC=60°,
∴∠A=∠CBE=30°.
∴AC=BC=,AB=2BC=2.
由旋轉(zhuǎn)性質(zhì)可知:AC=A′C,BC=B′C,
∠ACD=∠BCE,
∴△ADC∽△BEC,
∴=,
∴BE=x.
∵BD=2﹣x,
∴s=×x(2﹣x)=﹣x2+x.(0<x<2)
(3)∵s=s△ABC
∴﹣+=,
∴4x2﹣8x+3=0,
∴,.
①當x=時,BD=2﹣=,BE=×=.
∴DE==.
∵DE∥A′B′,
∴∠EDC=∠A′=∠A=30°.
∴EC=DE=>BE,
∴此時⊙E與A′C相離.
過D作DF⊥AC于F,則,.
∴.
∴. (12分)
②當時,,.
∴,
∴,
∴此時⊙E與A'C相交.
同理可求出.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E是AD邊上一點,AE:ED=1:2,連接AC、BE交于點F.若S△AEF=1,則S四邊形CDEF=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經(jīng)過測試同時開放2個大餐廳和1個小餐廳,可供3000名學(xué)生就餐;同時開放1個大餐廳,1個小餐廳,可供1700名學(xué)生就餐.
(1)請問1個大餐廳、1個小餐廳分別可供多少名學(xué)生就餐.
(2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全校4500名學(xué)生就餐?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:
(1)樣本中的總?cè)藬?shù)為 ,開私家車的人數(shù) ,扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為 度;(直接寫出答案)
(2)補全條形統(tǒng)計圖;
(3)該單位共有500人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行、坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順市某校想知道學(xué)生對“遙遠的赫圖阿拉”,“旗袍故里”等家鄉(xiāng)旅游品牌的了解程度,隨機抽取了部分學(xué)生進行問卷調(diào)查,問卷有四個選項(每位被調(diào)查的學(xué)生必選且只選一項)A.十分了解,B.了解較多,C.了解較少,D.不知道.將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次調(diào)查了多少名學(xué)生?
(2)補全條形統(tǒng)計圖;
(3)該校共有500名學(xué)生,請你估計“十分了解”的學(xué)生有多少名?
(4)在被調(diào)查“十分了解”的學(xué)生中有四名學(xué)生會干部,他們中有3名男生和1名女生,學(xué)校想從這4人中任選兩人做家鄉(xiāng)旅游品牌宣傳員,請用列表或畫樹狀圖法求出被選中的兩人恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,點A (1, 0),B(0,2),將點B沿x軸正方向平移3個單位長度得到對應(yīng)點B′,點B′ 恰在反比例函數(shù)y= (x>0)的圖象上.
(1)求k的值;
(2)如圖2,將△AOB (點O為坐標原點)沿AB翻折得到△ACB,求點C的坐標;
(3)是否存在這樣的點P,以P為位似中心,將△AOB放大為原來的兩倍后得到△DEF (即△DEF∽△AOB,且相似比為2),使得點D、F恰好在反比例函數(shù)y=(x>0) 的圖象上?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,分別為邊,,,上的點(不與端點重合).對于任意菱形,下面四個結(jié)論中:①存在無數(shù)個四邊形是平行四邊形;②存在無數(shù)個四邊形是菱形;③存在無數(shù)個四邊形是矩形;④存在無數(shù)個四邊形是正方形;所有正確結(jié)論的序號是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=AC, ∠BAC <60°,將線段 AB 繞點 A逆時針旋轉(zhuǎn) 60°得到點 D, 點 E 與點 D 關(guān)于直線 BC 對稱,連接 CD,CE,DE.
(1)依題意補全圖形;
(2)判斷△CDE 的形狀,并證明;
(3)請問在直線CE上是否存在點 P,使得 PA - PB =CD 成立?若存在,請用文字描述出點 P 的準確位置,并畫圖證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求作圖,不要求寫作法,但要保留作圖痕跡.
(1)如圖1,矩形ABCD的頂點A、D在圓上, B、C兩點在圓內(nèi),已知圓心O,請僅用無刻度的直尺作圖,請作出直線l⊥AD;
(2)請僅用無刻度的直尺在下列圖2和圖3中按要求作圖.(補上所作圖形頂點字母)
①圖2是矩形ABCD,E,F分別是AB和AD的中點,以EF為邊作一個菱形;
②圖3是矩形ABCD,E是對角線BD上任意一點(BE>DE),以AE為邊作一個平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com