在任意矩形ABCD中,AC,BD交于點(diǎn)O,如圖所示,則OA與BD有什么數(shù)量關(guān)系?

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、探究下列幾何題:
(1)如圖(1)所示,在△ABC中,CP⊥AB于點(diǎn)P,求證:AC2-BC2=AP2-BP2;
(2)如圖(2)所示,在四邊形ABCD中,AC⊥BD于點(diǎn)P,猜一猜AB,BC,CD,DA之間有何數(shù)量關(guān)系,并用式子表示出來(lái)(不用證明);
(3)如圖(3)所示,在矩形ABCD中,P是其內(nèi)部任意一點(diǎn),試猜想AP,BP,CP,DP之間的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,在△ABC中,若E、F分別是AB、BC的中點(diǎn),則EF與AC的數(shù)量關(guān)系和位置關(guān)系分別為:
 
;
(2)如圖2,任意四邊形ABCD中,E、F、G、H分別是四條邊的中點(diǎn),則四邊形EFGH的形狀是
 
,并說(shuō)明理由;
(3)若四邊形ABCD是矩形,則連接其四邊中點(diǎn)E、F、G、H,則四邊形EFGH的形狀是
 
,若四邊形ABCD是菱形,連接其四邊中點(diǎn)E、F、G、H,則四邊形EFGH的形狀是
 
;
(4)圖2中,若四邊形.EFGH是矩形,則四邊形ABCD應(yīng)滿足的條件是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•西青區(qū)二模)將矩形紙片ABCD放在平面直角坐標(biāo)系中,點(diǎn)A在y軸正半軸上,點(diǎn)B與點(diǎn)O重合(O為原點(diǎn)),點(diǎn)C在x軸正半軸上.若將矩形紙片折疊,使B落在邊AD(含端點(diǎn))上,落點(diǎn)記為E,這時(shí)折痕與邊BC或者邊CD(含端點(diǎn))交于F,然后展開(kāi)鋪平,則以B、E、F為頂點(diǎn)的△BEF稱為矩形ABCD的“折痕三角形”.
(Ⅰ)如圖(1),根據(jù)“折痕三角形”的定義請(qǐng)你判斷矩形ABCD的任意一個(gè)“折痕△BEF”的形狀(不需要證明);
(Ⅱ)如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)它的“折痕△BEF”的頂點(diǎn)E位于AD的中點(diǎn)時(shí),畫出這個(gè)“折痕△BEF”,并求出點(diǎn)F的坐標(biāo);
(Ⅲ)如圖(3),在矩形ABCD中,AB=2,BC=4.該矩形是否存在面積最大的“折痕△BEF”?若存在,說(shuō)明理由,并求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,也請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧夏)在矩形ABCD中,AB=2,AD=3,P是BC上的任意一點(diǎn)(P與B、C不重合),過(guò)點(diǎn)P作AP⊥PE,垂足為P,PE交CD于點(diǎn)E.
(1)連接AE,當(dāng)△APE與△ADE全等時(shí),求BP的長(zhǎng);
(2)若設(shè)BP為x,CE為y,試確定y與x的函數(shù)關(guān)系式.當(dāng)x取何值時(shí),y的值最大?最大值是多少?
(3)若PE∥BD,試求出此時(shí)BP的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案