【題目】如圖,AB為⊙O的直徑,D為 的中點(diǎn),連接OD交弦AC于點(diǎn)F,過(guò)點(diǎn)D作DE∥AC,交BA的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)連接CD,若OA=AE=4,求四邊形ACDE的面積.
【答案】
(1)證明:∵D為 的中點(diǎn),
∴OD⊥AC,
∵AC∥DE,
∴OD⊥DE,
∴DE是⊙O的切線(xiàn)
(2)解:連接DC,
∵D為 的中點(diǎn),
∴OD⊥AC,AF=CF,
∵AC∥DE,且OA=AE,
∴F為OD的中點(diǎn),即OF=FD,
在△AFO和△CFD中,
∴△AFO≌△CFD(SAS),
∴S△AFO=S△CFD,
∴S四邊形ACDE=S△ODE
在Rt△ODE中,OD=OA=AE=4,
∴OE=8,
∴DE= =4 ,
∴S四邊形ACDE=S△ODE= ×OD×DE= ×4×4 =8 .
【解析】(1)欲證明DE是⊙O的切線(xiàn),只要證明AC⊥OD,ED⊥OD即可.(2)由△AFO≌△CFD(SAS),推出S△AFO=S△CFD , 推出S四邊形ACDE=S△ODE , 求出△ODE的面積即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D在邊AB上,線(xiàn)段DC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),端點(diǎn)C恰巧落在邊AC上的點(diǎn)E處.如果 =m, =n.那么m與n滿(mǎn)足的關(guān)系式是:m=(用含n的代數(shù)式表示m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:①該拋物線(xiàn)的對(duì)稱(chēng)軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c+2=0無(wú)實(shí)數(shù)根;③a﹣b+c≥0; ④ 的最小值為3.其中正確的是( )
A.①②③
B.②③④
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣ x﹣ 與x,y軸分別交于點(diǎn)A,B,與反比例函數(shù)y= 的圖象在第二象限交于點(diǎn)C,過(guò)點(diǎn)A作x軸的垂線(xiàn)交該反比例函數(shù)圖象于點(diǎn)D.若AD=AC,則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017赤峰)已知平行四邊形ABCD.
(1)尺規(guī)作圖:作∠BAD的平分線(xiàn)交直線(xiàn)BC于點(diǎn)E,交DC延長(zhǎng)線(xiàn)于點(diǎn)F(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)在(1)的條件下,求證:CE=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△OPA和△OQB分別是以O(shè)P、OQ為直角邊的等腰直角三角形,點(diǎn)C、D、E分別是OA、OB、AB的中點(diǎn).
(1)當(dāng)∠AOB=90°時(shí)如圖1,連接PE、QE,直接寫(xiě)出EP與EQ的大小關(guān)系;
(2)將△OQB繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn),當(dāng)∠AOB是銳角時(shí)如圖2,(1)中的結(jié)論是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)加以說(shuō)明.
(3)仍將△OQB繞點(diǎn)O旋轉(zhuǎn),當(dāng)∠AOB為鈍角時(shí),延長(zhǎng)PC、QD交于點(diǎn)G,使△ABG為等邊三角形如圖3,求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖示,正方形ABCD的頂點(diǎn)A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點(diǎn)G,連接CF.
①求證:△DAE≌△DCF;
②求證:△ABG∽△CFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),設(shè)拋物線(xiàn)的頂點(diǎn)為D.
(1)求該拋物線(xiàn)的解析式與頂點(diǎn)D的坐標(biāo).
(2)試判斷△BCD的形狀,并說(shuō)明理由.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P,A,C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com