【題目】在圖1、2中,⊙O過了正方形網(wǎng)格中的格點(diǎn)A、B、C、D,請你僅用無刻度的直尺分別在圖1、圖2、圖3中畫出一個(gè)滿足下列條件的∠P
(1)頂點(diǎn)P在⊙O上且不與點(diǎn)A、B、C、D重合;
(2)∠P在圖1、圖2、圖3中的正切值分別為1、、2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,3),B(1,0),連接BA,將線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BC,反比例函數(shù)y=的圖象G經(jīng)過點(diǎn)C.
(1)請直接寫出點(diǎn)C的坐標(biāo)及k的值;
(2)若點(diǎn)P在圖象G上,且∠POB=∠BAO,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,若Q(0,m)為y軸正半軸上一點(diǎn),過點(diǎn)Q作x軸的平行線與圖象G交于點(diǎn)M,與直線OP交于點(diǎn)N,若點(diǎn)M在點(diǎn)N左側(cè),結(jié)合圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),B(﹣4,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C,求△BMC面積的最大值;
(3)在(2)中△BMC面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩座城市之間有一條高速公路,甲、乙兩輛汽車同時(shí)分別從這條路兩端的入口處駛?cè),并始終在高速公路上正常行駛.甲車駛往B城,乙車駛往A城,甲車在行駛過程中速度始終不變.甲車距B城高速公路入口處的距離y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系如圖.
(1)求y關(guān)于x的表達(dá)式;
(2)已知乙車以60千米/時(shí)的速度勻速行駛,設(shè)行駛過程中,兩車相距的路程為s(千米).請直接寫出s關(guān)于x的表達(dá)式;
(3)當(dāng)乙車按(2)中的狀態(tài)行駛與甲車相遇后,速度隨即改為a(千米/時(shí))并保持勻速行駛,結(jié)果比甲車晚40分鐘到達(dá)終點(diǎn),求乙車變化后的速度a.在下圖中畫出乙車離開B城高速公路入口處的距離y(千米)與行駛時(shí)間x(時(shí))之間的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)以下列正方形網(wǎng)絡(luò)的交點(diǎn)為頂點(diǎn),分別畫出兩個(gè)相似比不為1的相似三角形,使它們:①都是直角三角形;②都是銳角三角形;③都是鈍角三角形.
(2)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,﹣1)、(2,1).
①以0點(diǎn)為位似中心在y軸的左側(cè)將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
②分別寫出B、C兩點(diǎn)的對應(yīng)點(diǎn)B′、C′的坐標(biāo);
③如果△OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對應(yīng)點(diǎn)M′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x -2mx(m為常數(shù)),當(dāng)-1≤x≤2時(shí),函數(shù)y的最小值為-2,則m的值是( )
A. B. C. 或 D. -或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】善于歸納和總結(jié)的小明發(fā)現(xiàn),“數(shù)形結(jié)合”是初中數(shù)學(xué)的基本思想方法,被廣泛地應(yīng)用在數(shù)學(xué)學(xué)習(xí)和解決問題中.用數(shù)量關(guān)系描述圖形性質(zhì)和用圖形性質(zhì)描述數(shù)量關(guān)系,往往會有新的發(fā)現(xiàn).小明在研究垂直于直徑的弦的性質(zhì)過程中(如圖,直徑AB⊥弦CD于點(diǎn)E,設(shè)AE=x,BE=y,用含x,y的式子表示圖中的弦CD的長度),通過比較運(yùn)動(dòng)的弦CD和與之垂直的直徑AB的大小關(guān)系,發(fā)現(xiàn)了一個(gè)關(guān)于正數(shù)x,y的不等式,你也能發(fā)現(xiàn)這個(gè)不等式嗎?寫出你發(fā)現(xiàn)的不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com