如圖,P是拋物線上的一點,以點P為圓心、1個單位長度為半徑作⊙P,當(dāng)⊙P與直線y=2相切時,點P的坐標(biāo)為                  
(2+,1)、(2 -,1)、(0,3)、(4,3).

試題分析:根據(jù)⊙P的半徑為1,以及⊙P與直線y=2相切,求出x的值即可得出答案.
試題解析:設(shè)點P的坐標(biāo)為(x,)則
(1)當(dāng)圓心P在直線y=2的下方時有2-()=1,解得:,
(2)當(dāng)圓心P在直線y=2的上方時有-2=1,解得,
所以:點P的坐標(biāo)為(2+,1)、(2 -,1)、(0,3)、(4,3)
考點: 二次函數(shù)綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖①,在Rt△ACB中,∠C=90º,AC=6cm,BC=8cm,點P由B出發(fā)沿BC方向向點C勻速運(yùn)動,速度為2cm/s;點Q由A出發(fā)沿AB方向向點B勻速運(yùn)動,速度為1cm/s;連接PQ.若設(shè)運(yùn)動的時間為t(s)(0<t<4),解答下列問題:

(1)當(dāng)t為何值時,PQ的垂直平分線經(jīng)過點B?
(2)如圖②,連接CQ.設(shè)△PQC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;

(3)如圖②,是否存在某一時刻t,使線段C Q恰好把四邊形ACPQ的面積分成1:2的兩部分?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x

-1
0
  1
2
3
4

y

8
3
0
-1
0
3

(1)求該二次函數(shù)的解析式;
(2)當(dāng)x為何值時,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)兩點都在該函數(shù)的圖象上,計算當(dāng)m 取何值時,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

天貓商城旗艦店銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設(shè)該旗艦店每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果旗艦店想要每月獲得的利潤不低于2000元,那么每月的成本最少需要     元?
(成本=進(jìn)價×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的圖象向右移動3個單位,再向下移動4個單位,解析式是                  ;它的頂點坐標(biāo)是            .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+2x-1.
(1)寫出它的頂點坐標(biāo);
(2)當(dāng)x取何值時,y隨x的增大而增大;
(3)求出圖象與軸的交點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價為2元的粽子的銷售情況.(售價不低于進(jìn)價).請根據(jù)小麗提供的信息,解答小華和小明提出的問題.

認(rèn)真閱讀上面三位同學(xué)的對話,請根據(jù)小麗提供的信息.
(1)解答小華的問題;
(2)解答小明的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線y=(x+2)2-3的圖像向上平移5個單位,得到函數(shù)解析式為            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

老師給出一個函數(shù),甲,乙,丙,丁四位同學(xué)各指出這個函數(shù)的一個性質(zhì):
甲:函數(shù)的圖像不經(jīng)過第三象限;乙:函數(shù)的圖像經(jīng)過第一象限;
丙:當(dāng)x<2時,y隨x的增大而減。欢。寒(dāng)x<2時,y>0;
已知這四位同學(xué)敘述都正確,請構(gòu)造出滿足上述所有性質(zhì)的一個函數(shù)___________________。

查看答案和解析>>

同步練習(xí)冊答案