【題目】如圖,在中,,為邊上一點(diǎn),為邊的中點(diǎn),過點(diǎn),交的延長線于點(diǎn),連結(jié)

1)求證:四邊形是平行四邊形;

2)若點(diǎn)為邊的中點(diǎn),當(dāng)線段BC與線段AC滿足什么數(shù)量關(guān)系時(shí),四邊形為正方形.

【答案】1)證明見解析,(2證明見解析,

【解析】

1)根據(jù)平行線的性質(zhì)得到∠AFE=BDE,根據(jù)全等三角形的性質(zhì)得到AF=BD,于是得到結(jié)論;

2)首先證明四邊形ACDF是矩形,再利用添加的條件:證明CA=CD即可解決問題;

1)證明:∵AFBC

∴∠AFE=BDE,

的中點(diǎn),

在△AEF與△BED中,

∴△AEF≌△BED,

AF=BD,

AFBD

∴四邊形ADBF是平行四邊形;

2 理由如下:

的中點(diǎn),

CD=DB,

AE=BE

DEAC,

∴∠FDB=C=90°

AFBC,

∴∠AFD=FDB=90°

∴∠C=CDF=AFD=90°,

∴四邊形ACDF是矩形,

BC=2AC,CD=BD

CA=CD,

∴四邊形ACDF是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+cx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)Bx軸的正半軸上,點(diǎn)Cy軸的正半軸上,線段OB、OC的長(OBOC)是方程x2﹣10x+16=0的兩個(gè)根,且拋物線的對稱軸是直線x=﹣2

1)求A、BC三點(diǎn)的坐標(biāo);

2)求此拋物線的表達(dá)式;

3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)EEF∥ACBC于點(diǎn)F,連接CE,設(shè)AE的長為m△CEF的面積為S,求Sm之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小山的東側(cè)A莊,有一熱氣球,由于受西風(fēng)的影響,以每分鐘35米的速度沿著與水平方向成75度角的方向飛行,40分鐘時(shí)到達(dá)C處,此時(shí)氣球上的人發(fā)現(xiàn)氣球與山頂P點(diǎn)及小山西側(cè)的B莊在一條直線上,同時(shí)測得B莊的俯角為30度,又在A莊測得山頂P的仰角為45度,求A莊與B莊的距離___________,山高__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),矩形的頂點(diǎn)、,將矩形的一個(gè)角沿直線折疊,使得點(diǎn)落在對角線上的點(diǎn)處,折痕與軸交于點(diǎn)

1)求線段的長度;

2)求直線所對應(yīng)的函數(shù)表達(dá)式;

3)若點(diǎn)在線段上,在線段上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 中,AB15,AC13,高 AD12,則ABC 的周長是(

A. 42B. 32C. 42 32D. 42 37

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),當(dāng)△PMN周長取最小值時(shí),則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、、、四點(diǎn)在同一條直線上,,,添加以下哪一個(gè)條件不能判斷的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx3的圖象在第一象限內(nèi)相交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為4

1)求點(diǎn)A的坐標(biāo)及一次函數(shù)的解析式;

2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B、C,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長都是1.均在網(wǎng)格的格點(diǎn)上.

1)直接寫出四邊形的面積與、的長度;

2是直角嗎?請說出你的判斷理由.

3)找到一個(gè)格點(diǎn),并畫出四邊形,使得其面積與四邊形的面積相等.

解:(1___________;___________;___________.

2)判斷___________(填“是”或“否”)

理由_________________________________________________;

3)在圖中畫出一個(gè)滿足條件的四邊形.

查看答案和解析>>

同步練習(xí)冊答案