【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點,拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點,與x軸交于點B(1,0).
(1)求拋物線的解析式;
(2)點D為直線AC上一點,點E為拋物線上一點,且D,E兩點的橫坐標(biāo)都為2,點F為x軸上的點,若四邊形ADEF是平行四邊形,請直接寫出點F的坐標(biāo);
(3)若點P是線段AC上的一個動點,過點P作x軸的垂線,交拋物線于點Q,連接AQ,CQ,求△ACQ的面積的最大值.
【答案】(1)y=﹣x2﹣2x+3;(2)(7,0);(3).
【解析】
試題分析:(1)將x=0代入直線的解析式求得點C(0,3),將y=0代入求得x=﹣3,從而得到點A(﹣3,0),設(shè)拋物線的解析式為y=a(x+3)(x﹣1),將點C的坐標(biāo)代入可求得a=﹣1,從而得到拋物線的解析式為y=﹣x2﹣2x+3;
(2)將x=2分別代入直線和拋物線的解析式,求得點D(2,5)、E(2,﹣5),然后根據(jù)平行四邊形的對角線互相平分可求得點F的坐標(biāo);
(3)如圖2所示:設(shè)點P的坐標(biāo)為(a,a+3),則點Q的坐標(biāo)為(a,﹣a2﹣2a+3).QP=﹣a2﹣3a,由三角形的面積公式可知:△ACQ的面積=﹣然后利用配方法求得二次函數(shù)的最大值即可
解:(1)∵將x=0代入y=x+3,得y=3,
∴點C的坐標(biāo)為(0,3).
∵將y=0代入y=x+3得到x=﹣3.
∴點A的坐標(biāo)為(﹣3,0).
設(shè)拋物線的解析式為y=a(x+3)(x﹣1),將點C的坐標(biāo)代入得:﹣3a=3.
解得:a=﹣1.
∴拋物線的解析式為y=﹣(x+3)(x﹣1).
整理得:y=﹣x2﹣2x+3;
(2)∵將x=2代入y=x+3得,y=5,
∴點D(2,5).
將x=2代入y=﹣x2﹣2x+3得:y=﹣5.
∴點E的坐標(biāo)為(2,﹣5).
如圖1所示:
∵四邊形ADFE為平行四邊形,
∴點F的坐標(biāo)為(7,0).
(3)如圖2所示:
設(shè)點P的坐標(biāo)為(a,a+3),則點Q的坐標(biāo)為(a,﹣a2﹣2a+3).
QP=﹣a2﹣2a+3﹣(a+3)=﹣a2﹣2a+3﹣a﹣3=﹣a2﹣3a.
∵△ACQ的面積=,
∴△ACQ的面積==﹣=(a)2+.
∴△ACQ的面積的最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 要了解人們對“低碳生活”的了解程度,宜采用普查方式
B. 隨機事件的概率為50%,必然事件的概率為100%
C. 一組數(shù)據(jù)3、4、5、5、6、7的眾數(shù)和中位數(shù)都是5
D. 若甲組數(shù)據(jù)的方差是0.168,乙組數(shù)據(jù)的方差是0.034,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費的收費方式是 (填①或②),月租費是 元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點,BD與過點C的直線互相垂直,垂足為點D,BD與半圓O交于點E,且BC平分∠DBA.
(1)求證:CD是半圓O的切線.
(2)若DC=8,BE=4,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:①對頂角相等;②內(nèi)錯角相等;③平行于同一條直線的兩條直線互相平行;④如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等。其中真命題的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:
①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),
其中正確結(jié)論的個數(shù)是( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N.當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖1),易證BM+DN=MN.
(1)當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN時(如圖2),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;
(2)當(dāng)∠MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com