【題目】甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)兩小時,甲車到達B地后立即調頭,并保持原速度與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經過一段時間后兩車同時到達C地,設兩車之間的距離為y(干米),甲車行駛的時間為x小時,y與x之間的函數(shù)圖象如圖所示,則當甲車重返A地時,乙車距離C地________千米.
科目:初中數(shù)學 來源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導的一種生活方式,某校為了解學生對共享單車的使用情況,隨機抽取部分學生進行問卷調查,并將這次調查的結果繪制了以下兩幅不完整的統(tǒng)計圖.
根據(jù)所給信息,解答下列問題:
(1)m= ;
(2)補全條形統(tǒng)計圖;
(3)這次調查結果的眾數(shù)是 ;
(4)已知全校共3000名學生,請估計“經常使用”共享單車的學生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=12cm,BC=24cm.動點P從點A開始沿邊AC向點C以2cm/s的速度移動;動點Q從點C開始沿邊CB向點B以4cm/s的速度移動.如果P,Q兩點同時出發(fā).
(1)經過幾秒,△PCQ的面積為32cm2?
(2)若設△PCQ的面積為S,運動時間為t,請寫出當t為何值時,S最大,并求出最大值;
(3)當t為何值時,以P,C,Q為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A(﹣3,0),C(0,).將矩形OABC繞點O順時針方向旋轉,使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx﹣3與直線y=x+3交于點A(m,0)和點B(2,n),與y軸交于點C.
(1)求m,n的值及拋物線的解析式;
(2)在圖1中,把△AOC平移,始終保持點A的對應點P在拋物線上,點C,O的對應點分別為M,N,連接OP,若點M恰好在直線y=x+3上,求線段OP的長度;
(3)如圖2,在拋物線上是否存在點Q(不與點C重合),使△QAB和△ABC的面積相等?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,CG⊥AB于點G,∠ABF=45°,F在CD上,BF交CG于點E,連接AE,且AE⊥AD.
(1)若BG=2,BC=,求EF的長度;
(2)求證:CE+BE=AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】活動1:
在一只不透明的口袋中裝有標號為1,2,3的3個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三位同學按丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,請你通過畫樹狀圖或列表計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)
活動2:
在一只不透明的口袋中裝有標號為1,2,3,4的4個小球,這些球除標號外都相同,充分攪勻,請你對甲、乙、丙三名同學規(guī)定一個摸球順序: → → ,他們按這個順序從袋中各摸出一個球(不放回),摸到1號球勝出,通過畫樹狀圖或列表求每位同學勝出的概率分別是多少.
猜想:
在一只不透明的口袋中裝有標號為1,2,3,…,(為正整數(shù))的個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三名同學按任意順序從袋中各摸出一個球(不放回),摸到1號球勝出,猜想:直接寫出這三名同學每人勝出的概率之間的大小關系.
由此你能得到什么活動經驗?(寫出一個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)(a,b為常數(shù),且)與反比例函數(shù)(m為常數(shù),且)的圖象交于點A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結OA、OB,求△AOB的面積;
(3)直接寫出當時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面內容,并解答問題:
楊輝和他的一個數(shù)學問題
我國古代對代數(shù)的研究,特別是對方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.
楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學家和數(shù)學教育家,楊輝一生留下了大量的著述,他著名的數(shù)學書共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個問題(選自楊輝所著《田畝比類乘除捷法》):
直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.
請你用學過的知識解決這個問題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com