如圖,點(diǎn)E、F分別是?ABCD對(duì)角線(xiàn)BD上的兩點(diǎn),要使△ADE≌△CBF,需添加一個(gè)條件    (只需添加一個(gè)即可)
【答案】分析:求出BF=DE,根據(jù)平行四邊形性質(zhì)求出AD=BC,AD∥BC,推出∠ADE=∠CBF,根據(jù)SAS證出糧三角形全等即可.
解答:解:需添加的條件是BE=DF,
理由是:∵BE=DF,
∴BE+EF=DF+EF,
∴BF=DE,
∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∴∠ADE=∠CBF,
∵在△ADE和△CBF中
,
∴△ADE≌△CBF(SAS),
故答案為:BE=DF.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì),全等三角形的判定,平行線(xiàn)的性質(zhì)等知識(shí)點(diǎn),關(guān)鍵是找出證明糧三角形全等的三個(gè)條件,題目比較好,是一道開(kāi)放型的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,點(diǎn)D、E分別是△ABC邊AB、AC上的點(diǎn),且DE∥BC,BD=2AD,那么△ADE的周長(zhǎng):△ABC的周長(zhǎng)=
1:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D,E分別是矩形OABC中AB和BC邊上的中點(diǎn),點(diǎn)B的坐標(biāo)為(6,4)
(1)寫(xiě)出A,C,E,D四點(diǎn)的坐標(biāo);并判斷點(diǎn)O到直線(xiàn)DE的距離是否等于線(xiàn)段的OE長(zhǎng);
(2)動(dòng)點(diǎn)F在線(xiàn)段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時(shí)點(diǎn)F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過(guò)拋物向上的兩點(diǎn)(不在x軸上)作x軸的垂線(xiàn),如果以這兩點(diǎn)及垂足為頂點(diǎn)的矩形在這條拋物線(xiàn)與x軸圍成的封閉圖形內(nèi)部,則稱(chēng)這個(gè)矩形是這條拋物線(xiàn)的內(nèi)接矩形,請(qǐng)你理解上述定義,解答下面的問(wèn)題:若矩形OABC是某個(gè)拋物線(xiàn)的周長(zhǎng)最大的內(nèi)接矩形,求這個(gè)拋物線(xiàn)的解析式(利用圖2解答).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)E、D分別是正三角形ABC、正四邊形ABCM、正五邊形ABCMN中以C點(diǎn)為頂點(diǎn)的一邊延長(zhǎng)線(xiàn)和另一邊反向延長(zhǎng)線(xiàn)上的點(diǎn),且
BE=CD,DB的延長(zhǎng)線(xiàn)交AE于點(diǎn)F,則圖1中∠AFB的度數(shù)為
 
;若將條件“正三角形、正四邊形、正五邊形”改為“正n邊形”,其他條件不變,則∠AFB的度數(shù)為
 
.(用n的代數(shù)式表示,其中,n≥3,且n為整數(shù))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢模擬)如圖,點(diǎn)I和O分別是△ABC的內(nèi)心和外心,則∠AIB和∠AOB的關(guān)系為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)E、D分別是正三角形ABC中以C點(diǎn)為頂點(diǎn)的一邊延長(zhǎng)線(xiàn)和另一邊反向延長(zhǎng)線(xiàn)上的點(diǎn),且BE=CD,DB延長(zhǎng)線(xiàn)交于AE于點(diǎn)F,則∠AFB的度數(shù)是
60°
60°

查看答案和解析>>

同步練習(xí)冊(cè)答案