(2013年四川南充8分)某商場購進(jìn)一種每件價(jià)格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:

(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價(jià)定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),由所給函數(shù)圖象得
,解得
∴函數(shù)關(guān)系式為y=-x+180。
(2)W=(x-100) y=(x-100)( -x+180) =-x2+280x-18000=-(x-140) 2+1600
當(dāng)售價(jià)定為140元, W最大=1600。
∴售價(jià)定為140元/件時(shí),每天最大利潤W=1600元。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工廠現(xiàn)有甲種原料360kg,乙種原料290kg,計(jì)劃用它們生產(chǎn)A、B兩種產(chǎn)品共50件,已知每生產(chǎn)一件A種產(chǎn)品,需要甲種原料9kg、乙種原料3kg,獲利700元,生產(chǎn)一件B種產(chǎn)品,需要甲種原料4kg、乙種原料10kg,可獲利1200元.
(1)利用這些原料,生產(chǎn)A、B兩種產(chǎn)品,有哪幾種不同的方案?
(2)設(shè)生產(chǎn)兩種產(chǎn)品總利潤為y(元),其中生產(chǎn)A中產(chǎn)品x(件),試寫出y與x之間的函數(shù)解析式.
(3)利用函數(shù)性質(zhì)說明,采用(1)中哪種生產(chǎn)方案所獲總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn)A,且點(diǎn)A的縱坐標(biāo)為1.

(1)求反比例函數(shù)的解析式;
(2)根據(jù)圖象寫出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀材料:若a,b都是非負(fù)實(shí)數(shù),則.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
證明:∵,∴
.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
舉例應(yīng)用:已知x>0,求函數(shù)的最小值.
解:.當(dāng)且僅當(dāng),即x=1時(shí),“=”成立.
當(dāng)x=1時(shí),函數(shù)取得最小值,y最小=4.
問題解決:汽車的經(jīng)濟(jì)時(shí)速是指汽車最省油的行駛速度.某種汽車在每小時(shí)70~110公里之間行駛時(shí)(含70公里和110公里),每公里耗油升.若該汽車以每小時(shí)x公里的速度勻速行駛,1小時(shí)的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(2)求該汽車的經(jīng)濟(jì)時(shí)速及經(jīng)濟(jì)時(shí)速的百公里耗油量(結(jié)果保留小數(shù)點(diǎn)后一位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某社區(qū)活動中心為鼓勵居民加強(qiáng)體育鍛煉,準(zhǔn)備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區(qū)居民免費(fèi)借用.該社區(qū)附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標(biāo)價(jià)均為30元,每個羽毛球的標(biāo)價(jià)為3元,目前兩家超市同時(shí)在做促銷活動:
A超市:所有商品均打九折(按標(biāo)價(jià)的90%)銷售;
B超市:買一副羽毛球拍送2個羽毛球.
設(shè)在A超市購買羽毛球拍和羽毛球的費(fèi)用為yA(元),在B超市購買羽毛球拍和羽毛球的費(fèi)用為yB(元).請解答下列問題:
(1)分別寫出yA、yB與x之間的關(guān)系式;
(2)若該活動中心只在一家超市購買,你認(rèn)為在哪家超市購買更劃算?
(3)若每副球拍配15個羽毛球,請你幫助該活動中心設(shè)計(jì)出最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

義潔中學(xué)計(jì)劃從榮威公司購買A、B兩種型號的小黑板,經(jīng)洽談,購買一塊A型小黑板比買一塊B型小黑板多用20元.且購買5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購買一塊A型小黑板、一塊B型小黑板各需要多少元?
(2)根據(jù)義潔中學(xué)實(shí)際情況,需從榮威公司購買A、B兩種型號的小黑板共60塊,要求購買A、B兩種型號小黑板的總費(fèi)用不超過5240元.并且購買A型小黑板的數(shù)量應(yīng)大于購買A、B種型號小黑板總數(shù)量的.請你通過計(jì)算,求出義潔中學(xué)從榮威公司購買A、B兩種型號的小黑板有哪幾種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知一次函數(shù)y=k1x+b(k1≠0)的圖象分別與x軸,y軸交于A,B兩點(diǎn),且與反比例函數(shù)(k2≠0)的圖象在第一象限的交點(diǎn)為C,過點(diǎn)C作x軸的垂線,垂足為D,若OA=OB=OD=2.

(1)求一次函數(shù)的解析式;
(2)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實(shí)黨中央提出的“惠民政策”,我市今年計(jì)劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不超過200萬元,又不低于198萬元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價(jià)為5.2萬元,一套B型“廉租房”的造價(jià)為4.8萬元.
(1)請問有幾種開發(fā)建設(shè)方案?
(2)哪種建設(shè)方案投入資金最少?最少資金是多少萬元?
(3)在(2)的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設(shè)辦公室決定通過縮小“廉租房”的面積來降低造價(jià)、節(jié)省資金.每套A戶型“廉租房”的造價(jià)降低0.7萬元,每套B戶型“廉租房”的造價(jià)降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設(shè)縮小面積后的“廉租房”,如果同時(shí)建設(shè)A、B兩種戶型,請你直接寫出再次開發(fā)建設(shè)的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

函數(shù)y=與y=ax2(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( )

查看答案和解析>>

同步練習(xí)冊答案