【題目】如圖,在△ABC中,∠ACB=90°, ∠ABC=60°,BC=6.動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB方向以每秒2個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿射線BC方向以每秒2個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q同時(shí)停止運(yùn)動(dòng),連結(jié)PQ、QA.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)CQ=2BP時(shí),求t的值;
(2)當(dāng)t為何值時(shí)QP=QA;
(3)若線段PQ的中垂線與線段BC相交(包括線段的端點(diǎn)),則t的取值范圍是 .(直接寫出答案)
【答案】(1)4;(2)4.5;(3)1.5≤t≤3
【解析】試題分析:(1)根據(jù)直角三角形的性質(zhì)求出AB,根據(jù)題意列出方程,解方程即可;
(2)根據(jù)相似三角形的性質(zhì)求出PE、BE,根據(jù)勾股定理列方程,解方程求出t;
(3)根據(jù)線段垂直平分線的性質(zhì)、勾股定理列式計(jì)算.
試題解析:解:(1)∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴AB=2BC=12,AC= ,由題意得,CQ=2t,BP=12﹣2t,則2t=2(12﹣2t),得t=4;
(2)作PE⊥BQ于E,則PE∥AC,∴△BPE∽△BAC,∴ ,解得,PE= ,BE=6﹣t,則EQ=EC+CQ=3t,∴PQ2=3(6﹣t)2+9t2,∵∠ACQ=90°,∴AQ2=AC2+CQ2=108+4t2,由題意得,108+4t2=3(6﹣t)2+9t2,解得,t=4.5;
(3)當(dāng)BP=BQ時(shí),12﹣2t=6+2t,解得,t=1.5,當(dāng)CP=CQ時(shí),3(6﹣t)2+t2=(2t)2,解得,t=3,則當(dāng)1.5≤t≤3時(shí),線段PQ的中垂線與線段BC相交,故答案為:1.5≤t≤3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,原點(diǎn)為O,點(diǎn)A(0,3),B(2,3),C(2,-3),D(0,-3).點(diǎn)P,Q是長(zhǎng)方形ABCD邊上的兩個(gè)動(dòng)點(diǎn),BC交x軸于點(diǎn)M.點(diǎn)P從點(diǎn)O出發(fā)以每秒1個(gè)單位長(zhǎng)度沿O→A→B→M的路線做勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q也從點(diǎn)O出發(fā)以每秒2個(gè)單位長(zhǎng)度沿O→D→C→M的路線做勻速運(yùn)動(dòng).當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)M時(shí),兩動(dòng)點(diǎn)均停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,四邊形OPMQ的面積為S.
(1)當(dāng)t=2時(shí),求S的值;
(2)若S<5時(shí),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店有單價(jià)為10元、15元和20元的三種文具盒出售,該商店統(tǒng)計(jì)了2014年3月份這三種文具盒的銷售情況,并繪制統(tǒng)計(jì)圖(不完整)如下:
(1)這次調(diào)查中一共抽取了多少個(gè)文具盒?
(2)求出圖1中表示“15元”的扇形所占圓心角的度數(shù);
(3)在圖2中把條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程﹣2kx++2=2(1﹣x)有兩個(gè)實(shí)數(shù)根,,
(1)求實(shí)數(shù)k的取值范圍;
(2)若方程的兩實(shí)根,滿足||=﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,計(jì)算正確的是( 。
A. (3a2)3=27a6B. (a2b)3=a5b3
C. x6+x2=x3D. (a+b)2=a2+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計(jì)算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com