【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,點P從點A出發(fā),以1cm/s的速度向點D運動;點Q從點C同時出發(fā),以3cm/s的速度向點B運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動,設(shè)運動時間為t(s).
(1)當(dāng)t為何值時,PQ∥CD?
(2)當(dāng)t為何值時,PQ=CD?
【答案】
(1)解:根據(jù)題意得:PA=t,CQ=3t,則PD=AD﹣PA=24﹣t.
∵AD∥BC,
即PQ∥CD,
∴當(dāng)PD=CQ時,四邊形PQCD為平行四邊形,
即24﹣t=3t,
解得:t=6,
即當(dāng)t=6時,PQ∥CD
(2)解:若PQ=DC,分兩種情況:
①PQ=DC,由(1)可知,t=6,
②PQ≠CC,由QC=PD+2(BC﹣AD),
可得方程:3t=24﹣t+4,
解得:t=7
【解析】(1)由當(dāng)PQ∥CD時,四邊形PQCD為平行四邊形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根據(jù)PQ=CD,一種情況是:四邊形PQCD為平行四邊形,可得方程24﹣t=3t,一種情況是:四邊形PQCD為等腰梯形,可求得當(dāng)QC﹣PD=QC﹣EF=QF+EC=2CE,即3t﹣(24﹣t)=4時,四邊形PQCD為等腰梯形,解此方程即可求得答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索新知】
如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB、∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“妙分線”.
【解決問題】
(1)如圖2,若∠MPN= ,且射線PQ是∠MPN的“妙分線”,則∠NPQ= ____ .(用含的代數(shù)式表示出所有可能的結(jié)果)
【深入研究】
如圖2,若∠MPN=54°,且射線PQ繞點P從PN位置開始,以每秒8°的速度順時針旋轉(zhuǎn),當(dāng)PQ與PN成時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.
(2)當(dāng)t為何值時,射線PM是∠QPN的“妙分線”.
(3)若射線PM同時繞點P以每秒6°的速度順時針旋轉(zhuǎn),并與PQ同時停止.請求出當(dāng)射線PQ 是∠MPN的“妙分線”時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段AB=20cm,CD=2cm,線段CD在線段AB上運動,E、F分別是AC、BD的中點.
(1)若AC=4cm,則EF=_________cm.
(2)當(dāng)線段CD在線段AB上運動時,試判斷EF的長度是否發(fā)生變化?如果不變請求出EF的長度,如果變化,請說明理由.
(3)我們發(fā)現(xiàn)角的很多規(guī)律和線段一樣,如圖②已知在內(nèi)部轉(zhuǎn)動,OE、OF分別平分在,則、和有何關(guān)系,請直接寫出_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校學(xué)生會成員的年齡如下表:則出現(xiàn)頻數(shù)最多的年齡是( )
年 齡 | 13 | 14 | 15 | 16 |
人數(shù)(人) | 4 | 5 | 4 | 3 |
A.4
B.14
C.13和15
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段CD是由線段AB平移得到的,點A(﹣1,4)的對應(yīng)點為C(2,3),則點B(﹣4,﹣1)的對應(yīng)點D的坐標(biāo)為( )
A. (﹣7,﹣2) B. (﹣7,0) C. (﹣1,﹣2) D. (﹣1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A校女生占全??cè)藬?shù)的40%,B校女生占全校總?cè)藬?shù)的55%,則女生人數(shù)( )
A.A校多于B校
B.A校與B校一樣多
C.A校少于B校
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為28的平行四邊形紙片ABCD中,AB=7,∠BAD=45°,按下列步驟進行裁剪和拼圖.
第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點),得到△ABE和△ADE紙片;
第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;
第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).
則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】判斷正誤,并說明理由
(1)給定一組數(shù)據(jù),那么這組數(shù)據(jù)的眾數(shù)有可能不唯一;理由
(2)給定一組數(shù)據(jù),那么這組數(shù)據(jù)的平均數(shù)一定是這組數(shù)據(jù)中的一個數(shù);
理由
(3)n個數(shù)的中位數(shù)一定是這n個數(shù)中的某一個;理由
(4)求9個數(shù)據(jù)(x1、x2、……、x9 , 其平均數(shù)為m)的標(biāo)準(zhǔn)差S, 計算公式為: ;理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中,以﹣2為解的方程是( )
A. 3x+1=2x﹣1B. 3x﹣2=2x
C. 5x﹣3=6x﹣2D. 4x﹣1=2x+3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com