【題目】如圖在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x﹣2的圖象與函數(shù)y=(k≠0)的圖象有交點(diǎn)為A(m,2),與y軸交于點(diǎn)B
(1)求反比例函數(shù)的解析式;
(2)若函數(shù)y=在第一象限的圖象上有一點(diǎn)P,且△POB的面積為6,求點(diǎn)P坐標(biāo).
【答案】(1);(2)(6,).
【解析】
(1)通過一次函數(shù)求出m,即求出A的坐標(biāo);然后通過把A坐標(biāo)代入反比例函數(shù),求反比例函數(shù)解析式;
(2)先確定△POB的面積以OB為底,CP為高;OB的長(zhǎng)是固定的,只需要CP的長(zhǎng)度;點(diǎn)P 在反比例函數(shù)圖象上,將它代入反比例函數(shù),從而求出P(x,)即CP=x; 從而列出S△POB=OB·==6,即x=6,并求出y值,從而確定P的坐標(biāo);
解:(1)由已知得點(diǎn)A(m,2)在函數(shù)y=2x﹣2圖象上,故2m﹣2=2,解得m=2,即A(2,2)
并且點(diǎn)A(2,2)也在函數(shù)y=的圖象上,
∴2= 解得k=4,∴所以反比例函數(shù)y=
(2)過點(diǎn)P作CP⊥y軸;△POB的面積以OB為底,CP為高;
在函數(shù)y=2x﹣2中,當(dāng)x=0時(shí),y=﹣2
即OB=2,設(shè)函數(shù)y=(x>0)圖象上點(diǎn)P(x,)
∴S△POB=OB·==6
解得:x=6,則y=
∴此時(shí)點(diǎn)p(6,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直線上方有一個(gè)正方形,,以點(diǎn)為圓心,為半徑作弧,與交于點(diǎn),分別以點(diǎn)為圓心,長(zhǎng)為半徑作弧,兩弧交于點(diǎn),連結(jié),則的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖所示,在平面直角坐標(biāo)系xOy中,拋物線y=ax2-2ax-3a(a<0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過點(diǎn)A的直線l:y=kx+b與y軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)求A,B兩點(diǎn)的坐標(biāo)及拋物線的對(duì)稱軸;
(2)求直線l的函數(shù)解析式(其中k,b用含a的式子表示);
(3)點(diǎn)E是直線l上方的拋物線上的動(dòng)點(diǎn),若△ACE的面積的最大值為,求a的值;
(4)設(shè)P是拋物線的對(duì)稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,直接寫出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.
(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個(gè)動(dòng)點(diǎn),求面積的最大值;
(3)拋物線對(duì)稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo),若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的序號(hào)____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,邊長(zhǎng)為的正方形的兩頂點(diǎn)分別在軸、軸的正半軸上,點(diǎn)在原點(diǎn).現(xiàn)將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn), 與軸相交于點(diǎn),如圖,當(dāng)時(shí),點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】扶貧工作小組對(duì)果農(nóng)進(jìn)行精準(zhǔn)扶貧,幫助果農(nóng)將一種有機(jī)生態(tài)水果拓寬了市場(chǎng).與去年相比,今年這種水果的產(chǎn)量增加了1000千克,每千克的平均批發(fā)價(jià)比去年降低了1元,批發(fā)銷售總額比去年增加了.
(1)已知去年這種水果批發(fā)銷售總額為10萬元,求這種水果今年每千克的平均批發(fā)價(jià)是多少元?
(2)某水果店從果農(nóng)處直接批發(fā),專營(yíng)這種水果.調(diào)查發(fā)現(xiàn),若每千克的平均銷售價(jià)為41元,則每天可售出300千克;若每千克的平均銷售價(jià)每降低3元,每天可多賣出180千克,設(shè)水果店一天的利潤(rùn)為元,當(dāng)每千克的平均銷售價(jià)為多少元時(shí),該水果店一天的利潤(rùn)最大,最大利潤(rùn)是多少?(利潤(rùn)計(jì)算時(shí),其它費(fèi)用忽略不計(jì).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,.
(1)如圖①,點(diǎn)在斜邊上,以點(diǎn)為圓心,長(zhǎng)為半徑的圓交于點(diǎn),交于點(diǎn),與邊相切于點(diǎn).求證:;
(2)在圖②中作,使它滿足以下條件:
①圓心在邊上;②經(jīng)過點(diǎn);③與邊相切.
(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,點(diǎn)在邊上,,.點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)半徑為6的圓與的一邊相切時(shí),的長(zhǎng)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com