精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在數軸上有A、B、C、D四個整數點即各點均表示整數,且,若A、D兩點表示的數的分別為6,點EBD的中點,那么該數軸上上述五個點所表示的整數中,離線段BD的中點最近的整數是  

A. B. 0C. 1D. 2

【答案】D

【解析】

試題根據A、D兩點在數軸上所表示的數,求得AD的長度,然后根據2AB=BC=3CD,求得ABBD的長度,從而找到BD的中點E所表示的數.

解:∵|AD|=|6﹣﹣5|=11,

2AB=BC=3CD

∴AB=1.5CD,

∴1.5CD+3CD+CD=11,

∴CD=2,

∴AB=3,

∴BD=8,

∴ED=BD=4,

∴|6﹣E|=4,

E所表示的數是:6﹣4=2

離線段BD的中點最近的整數是2

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF、BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC.

(1)求證:OE=OF;
(2)若BC=2 ,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標平面內有兩點、,且、兩點之間的距離等于為大于0的已知數),在不計算的數值條件下,完成下列兩題:

1)以學過的知識用一句話說出的理由;

2)在軸上是否存在點,使是等腰三角形,如果存在,請寫出點的坐標,并求的面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點Pab),若點P的坐標為(akb,kab)(其中k為常數,且k≠0),則稱點P為點Pk屬派生點

例如:P14)的“2屬派生點P12×4,2×14),即P9,6).

1)點P(-1,6)的“2屬派生點P的坐標為_____________

2)若點P“3屬派生點P的坐標為(6,2),則點P的坐標___________;

3)若點Px軸的正半軸上,點Pk屬派生點P點,且線段PP的長度為線段OP長度的2倍,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長為36 cm,點P從點A開始沿AB邊向B點以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動,如果同時出發(fā),則過3s時,△BPQ的面積為____cm2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圖①、②分別是某種型號跑步機的實物圖與示意圖,已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機手柄的一端A的高度h(精確到0.1m). (參考數據:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】超市準備購進A、B兩種品牌的飲料共100件,兩種飲料每件利潤分別是15元和13元.設購進A種飲料x件,且所購進的兩種飲料能全部賣出,獲得的總利潤為y元.

1)求yx的函數關系式;

2)根據兩種飲料歷次銷量記載:A種飲料至少購進30件,B種飲料購進數量不少于A種飲料件數的2倍.問:A、B兩種飲料進貨方案有幾種?哪一種方案能使超市所獲利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀與理解:

如圖,一只甲蟲在5×5的方格(每個方格邊長均為1)上沿著網格線爬行.若我們規(guī)定:在如圖網格中,向上(或向右) 爬行記為“+”,向下(或向左) 爬行記為“﹣”,并且第一個數表示左右方向,第二個數表示上下方向.

例如:從AB記為:A→B(+1,+4),從DC記為:D→C(﹣1,+2).

思考與應用:

(1)圖中A→C(   ,   ),B→C(      ),D→A(   ,   

(2)若甲蟲從AP的行走路線依次為:(+3,+2)→(+1,+3)→(+1,﹣2),請在圖中標出P的位置.

(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),請計算該甲蟲走過的總路程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某調查公司對本區(qū)域的共享單車數量及使用次數進行了調查發(fā)現,今年3月份第1周共有各類單車1000輛,第2周比第1周增加了10%,第3周比第2周增加了100輛.

調查還發(fā)現某款單車深受群眾喜愛,第1周該單車的每輛平均使用次數是這一周所有單車平均使用次數的2.5倍,第2周、第3周該單車的每輛平均使用次數都比前一周增長一個相同的百分數m,第3周所有單車的每輛平均使用次數比第1周增加的百分數也是m,而且第3周該款單車(共100輛)的總使用次數占到所有單車總使用次數的四分之一(注:總使用次數=每輛平均使用次數×車輛數).

(1)求第3周該區(qū)域內各類共享單車的總數量;

(2)求m的值.

查看答案和解析>>

同步練習冊答案