【題目】如圖,在中,,,分別為,邊上的高,連接,過(guò)點(diǎn)作與點(diǎn),為中點(diǎn),連接,.
(1)如圖,若點(diǎn)與點(diǎn)重合,求證:;
(2)如圖,請(qǐng)寫(xiě)出與之間的關(guān)系并證明.
【答案】(1)詳見(jiàn)解析;(2)AF=2DG,且AF⊥DG,證明詳見(jiàn)解析.
【解析】
(1) 利用條件先△DAE≌△DBF,從而得出△FDE是等腰直角三角形,再證明△AEF是等腰直角三角形,即可.
(2) 延長(zhǎng)DG至點(diǎn)M,使GM=DG,交AF于點(diǎn)H,連接BM, 先證明△BGM≌△EGD,再證明△BDM≌△DAF即可推出.
解:(1)證明:設(shè)BE與AD交于點(diǎn)H..如圖,
∵AD,BE分別為BC,AC邊上的高,
∴∠BEA=∠ADB=90°.
∵∠ABC=45°,
∴△ABD是等腰直角三角形.
∴AD=BD.
∵∠AHE=∠BHD,
∴∠DAC=∠DBH.
∵∠ADB=∠FDE=90°,
∴∠ADE=∠BDF.
∴△DAE≌△DBF.
∴BF=AE,DF=DE.
∴△FDE是等腰直角三角形.
∴∠DFE=45°.
∵G為BE中點(diǎn),
∴BF=EF.
∴AE=EF.
∴△AEF是等腰直角三角形.
∴∠AFE=45°.
∴∠AFD=90°,即AF⊥DF.
(2)AF=2DG,且AF⊥DG.理由:延長(zhǎng)DG至點(diǎn)M,使GM=DG,交AF于點(diǎn)H,連接BM,
∵點(diǎn)G為BE的中點(diǎn),BG=GE.
∵∠BGM∠EGD,
∴△BGM≌△EGD.
∴∠MBE=∠FED=45°,BM=DE.
∴∠MBE=∠EFD,BM=DF.
∵∠DAC=∠DBE,
∴∠MBD=∠MBE+∠DBE=45°+∠DBE.
∵∠EFD=45°=∠DBE+∠BDF,
∴∠BDF=45°-∠DBE.
∵∠ADE=∠BDF,
∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.
∵BD=AD,
∴△BDM≌△DAF.
∴DM=AF=2DG,∠FAD=∠BDM.
∵∠BDM+∠MDA=90°,
∴∠MDA+∠FAD=90°.
∴∠AHD=90°.
∴AF⊥DG.
∴AF=2DG,且AF⊥DG
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)需要刻錄一批電腦光盤(pán),若到電腦公司刻錄,每張需8元(包括空白光盤(pán)費(fèi));若學(xué)校自刻,出租用刻錄機(jī)需120元外,每張光盤(pán)還需成本4元(包括空白光盤(pán)費(fèi))。問(wèn)刻錄這批電腦光盤(pán),該校如何選擇,才能使費(fèi)用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在Rt△ABC,∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連結(jié)AD、CF,AD與CF交于點(diǎn)M;
(1)求證:△ABD≌△FBC;
(2) 如圖(2),已知AD=6,求四邊形AFDC的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長(zhǎng)度都與OE相等,則最多能添加這樣的鋼管( )根.
A. 2 B. 4 C. 5 D. 無(wú)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,, ,…,都是等腰直角三角形,其中點(diǎn), ,…,在軸上,點(diǎn), ,…,在直線上,已知,則的長(zhǎng)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一傘狀圖形,已知,點(diǎn)是角平分線上一點(diǎn),且,,與交于點(diǎn),與交于點(diǎn).
(1)如圖一,當(dāng)與重合時(shí),探索,的數(shù)量關(guān)系
(2)如圖二,將在(1)的情形下繞點(diǎn)逆時(shí)針旋轉(zhuǎn)度,繼續(xù)探索,的數(shù)量關(guān)系,并求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB→BC→CD以3cm/s的速度向終點(diǎn)D勻速運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)沿AD以1cm/s的速度向終點(diǎn)D勻速運(yùn)動(dòng),設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為ts,△APQ的面積為Scm2,下列選項(xiàng)中能表示S與t之間函數(shù)關(guān)系的是( 。
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com