如圖,點P為△ABC三條角平分線交點,PD⊥AB,PE⊥BC,PF⊥AC,則PD    PE    PF.
【答案】分析:由角平分線的性質可分別求得PD=PF,PD=PE,所以PD=PE=PF.
解答:解:∵點P為△ABC三條角平分線交點,PD⊥AB,PE⊥BC,
∴PD=PE,
同理可得PD=PF,
∴PD=PE=PF.
故答案為:=,=.
點評:此題主要考查角平分線的性質:角的平分線上的點到角的兩邊的距離相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

12、如圖,點H為△ABC的垂心,以AB為直徑的⊙O1和△BCH的外接圓⊙O2相交于點D,延長AD交CH于點P,
求證:點P為CH的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、尺規(guī)作圖(不寫作法,但要保留作圖痕跡)
如圖,點E為∠ABC邊AC上一點,過點E作直線MN,使MN∥AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,點P為△ABC的內心,延長AP交△ABC的外接圓⊙O于D,過D作DE∥BC,交AC的延長線于E點.①則直線DE與⊙O的位置關系是
 
;②若AB=4,AD=6,CE=3,則DE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點G為△ABC的重心,DE過點G,且DE∥BC,EF∥AB,那么CF:BF=
1:2
1:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點E為△ABC邊AB上一點,AC=BC=BE,AE=EC,BD⊥AC于D,求∠CBD的度數(shù).

查看答案和解析>>

同步練習冊答案