【題目】如圖,在△ABC中,∠B30°,∠C50°,AE∠BAC的平分線,AD是高.

(1)∠BAE的度數(shù);

(2)∠EAD的度數(shù).

【答案】∠BAE50°,∠EAD10°

【解析】

試題(1)根據(jù)△ABC的內(nèi)角和定理求得∠BAC=100°;然后由角平分線的性質(zhì)、△ABE的內(nèi)角和定理來(lái)求∠BAE的度數(shù);

2)由三角形內(nèi)角和定理可求得∠BAC的度數(shù),在Rt△ADC中,可求得∠DAC的度數(shù),AE是角平分線,有∠EAC=

∠BAC,故∠EAD=∠EAC-∠DAC

解:(1△ABC中,∠B=30°∠C=50°,

∴∠BAC=180°-∠B-∠C=100°;

∵AE∠BAC的平分線,

∴∠BAE=∠BAC=50°;

2∵AD是邊BC上的高,

∴∠ADC=90°

△ADC中,∠C=50°,∠C+∠DAC=90°,

∴∠DAC=40°

由(1)知,∠BAE=∠CAE=50°

∴∠DAE=∠EAC-∠DAC=50°-40°=10°,即∠EAD=10°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用“※”定義一種新運(yùn)算:對(duì)于任意有理數(shù)ab,規(guī)定abab2+2ab+a

如:121×22+2×1×2+19

1)(﹣2)※3  ;

2)若316,求a的值;

3)若2xm,(x)※3n(其中x為有理數(shù)),試比較mn的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】口袋中裝有四個(gè)大小完全相同的小球,把它們分別標(biāo)號(hào)1,2,3,4,從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再?gòu)闹须S機(jī)摸出一個(gè)球,利用樹(shù)狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.

【答案】 .

【解析】試題分析:

根據(jù)題意列表如下,由表可以得到所有的等可能結(jié)果,再求出所有結(jié)果中兩次所摸到小球的數(shù)字之和為4的次數(shù),即可計(jì)算得到所求概率.

試題解析

列表如下:

1

2

3

4

1

(1,1)

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,2)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,3)

(3,4)

4

(4,1)

(4,2)

(4,3)

(4,4)

由表可知,共有16種等可能事件,其中兩次摸到的小球數(shù)字之和等于4的有(3,1)、(2,2)和(1,3),共計(jì)3,

P(兩次摸到小球的數(shù)字之和等于4=.

型】解答
結(jié)束】
23

【題目】小亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿AB的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測(cè)得其長(zhǎng)度為9.6米和2米,求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90,BC=4,AC=3,線段PQBCQ(如圖,此時(shí)點(diǎn)Q與點(diǎn)B重合),PQ=AB,當(dāng)點(diǎn)P沿PBB滑動(dòng)時(shí),點(diǎn)Q相應(yīng)的從B沿BCC滑動(dòng),始終保持PQ=AB不變,當(dāng)ABCPBQ全等時(shí),PB的長(zhǎng)度等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.

(1)求證:ABM≌△BCN;

(2)求APN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一張長(zhǎng)方形的紙對(duì)折,如圖所示可得到一條折痕(圖中虛線).繼續(xù)對(duì)折,對(duì)折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對(duì)折三次后,可以得到條折痕,那么對(duì)折四次可以得到( )條折痕.如果對(duì)折次, 可以得到( )條折痕

A.,B.,C.,D.,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°, AB//CD,MBC邊上的一點(diǎn),AM平分∠BAD,DM平分∠ADC,

求證:(1) AMDM;

(2) MBC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ACAB.

(1)AB邊的垂直平分線交BC于點(diǎn)P,作AC邊的垂直平分線交BC于點(diǎn)Q,連接APAQ.(尺規(guī)作圖,保留作圖痕跡,不需要寫(xiě)作法)

(2)(1)的條件下,若BC14,求△APQ的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn) A 是反比例函數(shù) y 在第一象限圖象上的一個(gè)動(dòng)點(diǎn),連接 OA,以OA 為長(zhǎng),OA為寬作矩形 AOCB,且點(diǎn) C 在第四象限,隨著點(diǎn) A 的運(yùn)動(dòng),點(diǎn) C 也隨之運(yùn)動(dòng),但點(diǎn) C 始終在反比例函數(shù) y 的圖象上,則 k 的值為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案