【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點P是這個菱形內部或邊上的一點,若以點P、B、C為頂點的三角形是等腰三角形,則P、D(P、D兩點不重合)兩點間的最短距離為 .
【答案】2 ﹣2
【解析】解:①若以邊BC為底,則BC垂直平分線上(在菱形的邊及其內部)的點滿足題意,此時就轉化為了“直線外一點與直線上所有點連線的線段中垂線段最短“,即當點P與點A重合時,PD值最小,為2;②若以邊PC為底,∠PBC為頂角時,以點B為圓心,BC長為半徑作圓,與BD相交于一點,則弧AC(除點C外)上的所有點都滿足△PBC是等腰三角形,當點P在BD上時,PD最小,最小值為2√3﹣2;③若以邊PB為底,∠PCB為頂角,以點C為圓心,BC為半徑作圓,則弧BD上的點A與點D均滿足△PBC為等腰三角形,當點P與點D重合時,PD最小,顯然不滿足題意,故此種情況不存在; 綜上所述,PD的最小值為2 ﹣2.
分三種情形討論①若以邊BC為底.②若以邊PC為底.③若以邊PB為底.分別求出PD的最小值,即可判斷.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△A1B1C1是邊長為1的等邊三角形,A2為等邊△A1B1C1的中心,連接A2B1并延長到點B2 , 使A2B1=B1B2 , 以A2B2為邊作等邊△A2B2C2 , A3為等邊△A2B2C2的中心,連接A3B2并延長到點B3 , 使A3B2=B2B3 , 以A3B3為邊作等邊△A3B3C3 , 依次作下去得到等邊△AnBnCn , 則等邊△A6B6C6的邊長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為( )
A. a2
B. a2
C. a2
D. a2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中直線y=x+2與反比例函數(shù) y=﹣ 的圖象有唯一公共點,若直線y=x+m與反比例函數(shù)y=﹣ 的圖象有2個公共點,則m的取值范圍是( )
A.m>2
B.﹣2<m<2
C.m<﹣2
D.m>2或m<﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個小長方形,然后按圖2的形狀拼成一個正方形.
(1)圖2中陰影部分的面積為 ;
(2)觀察圖2,請你寫出式子(m+n)2,(m-n)2,mn之間的等量關系: ;
(3)若x+y=-6,xy=2.75,求x-y的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市第一次用4600元購進甲、乙兩種商品,其中甲商品件數(shù)的2倍比乙商品件數(shù)的3倍少40件,甲、乙兩種商品的進價和售價如下表(利潤=售價﹣進價):
甲 | 乙 | |
進價(元/件) | 22 | 30 |
售價(元/件) | 28 | 40 |
(1)該超市第一次購進甲、乙兩種商品的件數(shù)分別是多少?
(2)該超市將第一次購進的甲、乙兩種商品全部賣出后一共可獲得多少利潤?
(3)該超市第二次以同樣的進價又購進甲、乙兩種商品.其中甲商品件數(shù)是第一次的2倍,乙商品的件數(shù)不變.甲商品按原價銷售,乙商品打折銷售.第二次甲、乙兩種商品銷售完以后獲得的利潤比第一次獲得的利潤多280元,則第二次乙商品是按原價打幾折銷售的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數(shù)y= 的圖象上.
(1)求反比例函數(shù)y= 的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP= S△AOB , 求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.
(1)請寫出圖中所有∠EOC的補角 ____________________;
(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com