在正方形ABCD中,過(guò)點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過(guò)翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
【感知】如圖1,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),可得FG=FD.

【探究】如圖2,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),猜想FG與FD的數(shù)量關(guān)系,并說(shuō)明理由.

【應(yīng)用】在圖2中,當(dāng)AB=5,BE=3時(shí),利用探究結(jié)論,求FG的長(zhǎng).
【探究】FG=FD;【應(yīng)用】.

試題分析:【探究】連接AF,根據(jù)圖形猜想FD=FG,由折疊的性質(zhì)可得AB=AG=AD,再結(jié)合AF為△AGF和△ADF的公共邊,從而證明△AGF≌△ADF,從而得出結(jié)論.
【應(yīng)用】設(shè)FG=x,則FC=5-x,F(xiàn)E=3+x,在RT△ECF中利用勾股定理可求出x的值,進(jìn)而可得出答案.
【探究】猜想FD=FG.
連接AF,

由折疊的性質(zhì)可得AB=AG=AD,
在Rt△AGF和Rt△ADF中,
,
∴△AGF≌△ADF.
∴FG=FD;
【應(yīng)用】設(shè)GF=,則CF=5-,則EF=+3
在△ECF中由勾股定理得,,解得
∴FG的長(zhǎng)為
點(diǎn)評(píng):,掌握△AGF≌△ADF始終不變是解答本題的關(guān)鍵,另外在進(jìn)行結(jié)論的應(yīng)用時(shí),得出Rt△EFC的各邊后運(yùn)用勾股定理進(jìn)行求解時(shí),要細(xì)心避免出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線CD與直線AB相交于點(diǎn)C,
根據(jù)下列語(yǔ)句畫(huà)圖(注:可利用三角尺畫(huà)圖,但要保持圖形清晰)

(1)過(guò)點(diǎn)PPQAB,交CD于點(diǎn)Q;過(guò)點(diǎn)PPRCD,垂足為R;
(2)若∠DCB=120°,則∠QPR是多少度?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=35°,∠B=85°,

(1)求∠DCE的度數(shù);
(2)求∠DCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

矩形ABCD中, 點(diǎn)F在邊AD上,過(guò)點(diǎn)F作CF⊥EF交AB于點(diǎn)E,AF="CD," 連接BF、CE交于點(diǎn)H,且滿足CH=HF+EH.

(1)求證:△AFE≌△DCF.
(2)求證:∠AFE=2∠EFH.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

圖1是一個(gè)八角星形紙板,圖中有八個(gè)直角,八個(gè)相等的鈍角,每條邊都相等.如圖2將紙板沿虛線進(jìn)行切割,無(wú)縫隙無(wú)重疊的拼成圖3所示的大正方形,其面積為8+4,則圖3中線段的長(zhǎng)為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD與正方形CEFG的位置如圖所示,點(diǎn)G在線段CD或CD的延長(zhǎng)線上,分別連接BD、BF、FD,得到BFD.
(1)在圖1、圖2、圖3中,若正方形CEFG的邊長(zhǎng)分別為1、3、4,且正方形ABCD的邊長(zhǎng)均為3,請(qǐng)通過(guò)計(jì)算填寫(xiě)下表:

圖1                  圖2                       圖3
正方形CEFG的邊長(zhǎng)
1
3
4
BFD的面積
 
 
 
(2)若正方形CEFG的邊長(zhǎng)為,正方形ABCD的邊長(zhǎng)為,猜想的大小,并結(jié)合圖3證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法中正確的個(gè)數(shù)是
(1)一組對(duì)邊平行的四邊形是梯形;          (2)等腰梯形的對(duì)角線相等;
(3)等腰梯形的兩個(gè)底角相等;              (4)等腰梯形有一條對(duì)稱(chēng)軸.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,長(zhǎng)方形ABCD沿EF折疊后,梯形ABFE落到梯形A1B1FE的位置,若∠AEF=110°,則∠B1FC=( )
   
A.30°B.35°C.40°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在矩形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,已知∠AOD=120°,AB=6,則AC的長(zhǎng)為          .

查看答案和解析>>

同步練習(xí)冊(cè)答案