【題目】如圖,在邊長為2的正方形中,動點(diǎn),分別以相同的速度從,兩點(diǎn)同時出發(fā)向和運(yùn)動(任何一個點(diǎn)到達(dá)停止),在運(yùn)動過程中,則線段的最小值為________.
【答案】
【解析】
如圖(見解析),先根據(jù)正方形的性質(zhì)、三角形的判定定理與性質(zhì)得出,再根據(jù)正方形的性質(zhì)、角的和差得出,從而得出點(diǎn)P的運(yùn)動軌跡,然后根據(jù)圓的性質(zhì)確認(rèn)CP取最小值時點(diǎn)P的位置,最后利用勾股定理、線段的和差求解即可.
由題意得:
由正方形的性質(zhì)得:
,即
在和中,
,即
點(diǎn)P的運(yùn)動軌跡在以AB為直徑的圓弧上
如圖,設(shè)AB的中點(diǎn)為點(diǎn)O,則點(diǎn)P在以點(diǎn)O為圓心,OA為半徑的圓上
連接OC,交弧AB于點(diǎn)Q
由圓的性質(zhì)可知,當(dāng)點(diǎn)P與點(diǎn)Q重合時,CP取得最小值,最小值為CQ
,即CP的最小值為
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1 cm/s的速度移動,同時點(diǎn)Q從點(diǎn)B開始沿BC向點(diǎn)C以2cm/s的速度移動.當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時另一點(diǎn)也隨之停止運(yùn)動,運(yùn)動時間為x秒(x>0).
(1)求幾秒后,PQ的長度等于5 cm.
(2)運(yùn)動過程中,△PQB的面積能否等于8 cm2?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年,我國海關(guān)總署嚴(yán)厲打擊“洋垃圾”違法行動,堅(jiān)決把“洋垃圾”拒于國門之外如圖,某天我國一艘海監(jiān)船巡航到港口正西方的處時,發(fā)現(xiàn)在的北偏東方向,相距海里處的點(diǎn)有一可疑船只正沿方向行駛,點(diǎn)在港口的北偏東方向上,海監(jiān)船向港口發(fā)出指令,執(zhí)法船立即從港口沿方向駛出,在處成功攔截可疑船只,此時點(diǎn)與點(diǎn)的距離為海里.
(1)求的度數(shù)與點(diǎn)到直線的距離;
(2)執(zhí)法船從到航行了多少海里?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知∠ABC=90°,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),分別以AB、AP為邊在∠ABC的內(nèi)部作等邊△ABE和△APQ,連接QE并延長交BP于點(diǎn)F. 試說明:(1)△ABP≌△AEQ;(2)EF=BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織七年級學(xué)生進(jìn)行“垃圾分類”知識測試,現(xiàn)隨機(jī)抽取部分學(xué)生的成績進(jìn)行統(tǒng)計(jì),并繪制如下頻數(shù)分布表以及頻數(shù)分布直方圖.
分?jǐn)?shù)檔 | 分?jǐn)?shù)段/分 | 頻數(shù) | 頻率 |
A | 90<x≤100 | a | 0.12 |
B | 80<x≤90 | b | 0.18 |
C | 70<x≤80 | 20 | c |
D | 60<x≤70 | 15 | d |
請根據(jù)以上信息,解答下列問題:
(1)已知A,B檔的學(xué)生人數(shù)之和等于D檔學(xué)生人數(shù),求被抽取的學(xué)生人數(shù),并把頻數(shù)分布直方圖補(bǔ)充完整.
(2)該校七年級共有200名學(xué)生參加測試,請估計(jì)七年級成績在C檔的學(xué)生人數(shù).
(3)你能確定被抽取的這些學(xué)生的成績的眾數(shù)在哪一檔嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,然后解答問題.
經(jīng)過正四邊形(即正方形)各頂點(diǎn)的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內(nèi)接正四邊形.
如圖,正方形ABCD內(nèi)接于⊙O,⊙O的面積為S1,正方形ABCD的面積為S2.以圓心O為頂點(diǎn)作∠MON,使∠MON=90°.將∠MON繞點(diǎn)O旋轉(zhuǎn),OM、ON分別與⊙O交于點(diǎn)E、F,分別與正方形ABCD的邊交于點(diǎn)G、H.設(shè)由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S.
(1)當(dāng)OM經(jīng)過點(diǎn)A時(如圖①),則S、S1、S2之間的關(guān)系為: (用含S1、S2的代數(shù)式表示);
(2)當(dāng)OM⊥AB于G時(如圖②),則(1)中的結(jié)論仍然成立嗎?請說明理由;
(3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(如圖③),則(1)中的結(jié)論任然成立嗎:請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動,同時動點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動,運(yùn)動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)試探究t為何值時,△BPQ的面積是cm2;
(3)直接寫出t為何值時,△BPQ是等腰三角形;
(4)連接AQ,CP,若AQ⊥CP,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北省咸寧市)如圖,邊長為4的正方形ABCD內(nèi)接于點(diǎn)O,點(diǎn)E是上的一動點(diǎn)(不與A、B重合),點(diǎn)F是上的一點(diǎn),連接OE、OF,分別與AB、BC交于點(diǎn)G,H,且∠EOF=90°,有以下結(jié)論:
①;
②△OGH是等腰三角形;
③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;
④△GBH周長的最小值為.
其中正確的是________(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對“第二十屆中國哈爾濱冰雪大世界”主題景觀的了解情況,在全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并把調(diào)查結(jié)果繪制成如圖的不完整的兩幅統(tǒng)計(jì)圖:
(1)本次調(diào)查共抽取了多少名學(xué)生;
(2)通過計(jì)算補(bǔ)全條形圖;
(3)若該學(xué)校共有名學(xué)生,請你估計(jì)該學(xué)校選擇“比較了解”項(xiàng)目的學(xué)生有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com