【題目】圖①是放置在水平面上的臺燈,圖②是其側(cè)面示意圖(臺燈底座高度忽略不計),其中燈臂AC=44cm,燈罩CD=32cm,燈臂與底座構(gòu)成的∠CAB=60°.CD可以繞點C上下調(diào)節(jié)一定的角度.使用發(fā)現(xiàn):當(dāng)CD與水平線所成的角為30°時,臺燈光線最佳.現(xiàn)測得點D到桌面的距離為54.06cm.請通過計算說明此時臺燈光線是否為最佳?(參考數(shù)據(jù):取1.73).
【答案】臺燈光線為最佳,理由見詳解.
【解析】
根據(jù)題意可知,本題考察解直角三角形的應(yīng)用,根據(jù)直角三角形的邊角關(guān)系,運用作輔助線構(gòu)造直角三角形進(jìn)行求解.
解:如圖,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.
∵∠CEH=∠CFH=∠FHE=90°,
∴四邊形CEHF是矩形,
∴CE=FH,
在Rt△ACE中,∵AC=44cm,∠A=60°,
∴CE=ACsin60°=38.06cm,
∴FH=CE=38.06cm
∵DH=54.06cm,
∴DF=DH﹣FH=54.06﹣38.06=16cm,
在Rt△CDF中,,
∴∠DCF=30°,∴此時臺燈光線為最佳.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解本校學(xué)生平均每天的課外學(xué)習(xí)時間情況,隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個等級,設(shè)學(xué)習(xí)時間為t(小時),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中信息解答下列問題:
(1)本次抽樣調(diào)查共抽取了____名學(xué)生,并將條形統(tǒng)計圖補充完整;
(2)本次抽樣調(diào)查中,學(xué)習(xí)時間的中位數(shù)落在____等級內(nèi);
(3)表示B等級的扇形圓心角α的度數(shù)是_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測得某建筑物的高度,在處用高為米的測角儀,測得該建筑物頂端的仰角為,再向建筑物方向前進(jìn)米,又測得該建筑物頂端的仰角為.
(1)填空: , ;
(2)求該建筑物的高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D,交BC于點E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在AD上,點E在BC上,把矩形沿EF折疊后,使點D恰好落 在BC邊上的G點處,若矩形面積為且∠AFG=60°,GE=2BG,則折痕EF的長為( 。
A.1B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級男生的體能情況,體育老師從中隨機抽取部分男生進(jìn)行引體向上測試,并對成績進(jìn)行了統(tǒng)計,繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問題:
(1)本次抽測的男生有________人,抽測成績的眾數(shù)是_________;
(2)請將條形圖補充完整;
(3)若規(guī)定引體向上6次以上(含6次)為體能達(dá)標(biāo),則該校125名九年級男生中估計有多少人體能達(dá)標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)任務(wù).
古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—前347)曾提出:能否將一
條線段分成不相等的兩部分.使較短線段與較長線段的比等于較長線段與原線段的比,這個相等的比就是,黃金分割在我們生活中有廣泛運用.黃金分割點也可以用折紙的方式得到.
第一步:裁一張正方形的紙片,先折出的中點,然后展平,再折出線段,再展平;
第二步:將紙片沿折疊,使落到線段上,的對應(yīng)點為,展平;
第三步:沿折疊,使落在上,的對應(yīng)點為,展平,這時就是的黃金分割點.
古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—前347)曾提出:能否將一
條線段分成不相等的兩部分.使較短線段與較長線段的比等于較長線段與原線段的比,這個相等的比就是,黃金分割在我們生活中有廣泛運用.黃金分割點也可以用折紙的方式得到.
第一步:裁一張正方形的紙片,先折出的中點,然后展平,再折出線段,再展平;
第二步:將紙片沿
第三步:沿折疊,使落在上,的對應(yīng)點為,展平,這時就是的黃金分割點.
任務(wù):(1)試根據(jù)以上操作步驟證明就是的黃金分割點;
(2)請寫出一個生活中應(yīng)用黃金分割的實際例子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+ax+3的頂點為P,它分別與x軸的負(fù)半軸、正半軸交于點A,B,與y軸正半軸交于點C,連接AC,BC,若tan∠OCB﹣tan∠OCA=.
(1)求a的值;
(2)若過點P的直線l把四邊形ABPC分為兩部分,它們的面積比為1:2,求該直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的周長為36 cm,對角線相交于點cm.若點是的中點,則的周長為( )
A.10 cmB.15 cmC.20 cmD.30 cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com