【題目】(問題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
(1)(問題解決)延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關系即可判斷出中線AD的取值范圍是 .
(反思感悟)解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮構造以該中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同個三角形中,從而解決問題.
(2)(嘗試應用)如圖②,△ABC中,∠BAC=90°,AD是BC邊上的中線,試猜想線段AB,AC,AD之間的數(shù)量關系,并說明理由.
(3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,D是BC的中點,DM⊥DN,DM交AB于點M,DN交AC于點N,連接MN.當BM=4,MN=5,AC=6時,請直接寫出中線AD的長.
【答案】(1)2<AD<8;(2)AB2+AC2=4AD2,理由見解析;(3)AD=5.
【解析】
(1)延長AD至E,使DE=AD,由SAS證明△BDE≌△CDA,得出BE=AC=8,在△ABE中,由三角形的三邊關系求出AE的取值范圍,即可得出AD的取值范圍;
(2)延長AD至E,使DE=AD,連接BE,如圖②所示,由(1)可知△BDE≌△CDA,然后只要證明∠ABE=90°,利用勾股定理即可得出結論;
(3)延長ND到E,使得DN=DE,連接BE、EM,首先證明△BDE≌△CDN,求出∠ABD+∠DBE=90°,然后利用勾股定理可得BE=3,進而得到AN=NC,利用三線合一證明DN⊥AC,同理可得DM⊥AB,然后證明四邊形AMDN是矩形即可解決問題.
解:(1)延長AD至E,使DE=AD,連接BE,如圖①所示,
∵AD是BC邊上的中線,
∴BD=CD,
在△BDE和△CDA中,,
∴△BDE≌△CDA(SAS),
∴BE=AC=6,
在△ABE中,由三角形的三邊關系得:ABBE<AE<AB+BE,
∴106<AE<10+6,即4<AE<16,
∴2<AD<8;
(2)AB2+AC2=4AD2,
理由:延長AD至E,使DE=AD,連接BE,如圖②所示,
由(1)可知:△BDE≌△CDA,
∴BE=AC,∠E=∠CAD,
∵∠BAC=90°,
∴∠E+∠BAE=∠BAE+∠CAD=∠BAC=90°,
∴∠ABE=90°,
∴AB2+BE2=AE2,
∴AB2+AC2=4AD2;
(3)如圖③,延長ND到E,使得DN=DE,連接BE、EM.
∵BD=DC,∠BDE=∠CDN,DE=DN,
∴△BDE≌△CDN,
∴BE=CM,∠EBD=∠C,
∵∠ABC+∠C=90°,
∴∠ABD+∠DBE=90°,
∵MD⊥EN,DE=DN,
∴ME=MN=5,
在Rt△BEM中,BE==3,
∴CN=BE=3,
∵AC=6,
∴AN=NC,
∵∠BAC=90°,BD=DC,
∴AD=DC=BD,
∴DN⊥AC,
在Rt△AMN中,AM==4,
∴AM=BM,
∵DA=DB,
∴DM⊥
∴∠AMD=∠AND=∠MAN=90°,
∴四邊形AMDN是矩形,
∴AD=MN=5.
科目:初中數(shù)學 來源: 題型:
【題目】我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為W萬元.(毛利潤=銷售額﹣生產(chǎn)費用)
(1)請直接寫出y與x以及z與x之間的函數(shù)關系式;(寫出自變量x的取值范圍)
(2)求W與x之間的函數(shù)關系式;(寫出自變量x的取值范圍);并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?
(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鄭州市農(nóng)業(yè)路高架橋二層的開通,較大程度緩解了市內(nèi)交通的壓力,最初設計南陽路口上橋匝道時,其坡角為15°,后來從安全角度考慮將匝道坡角改為5°(見示意圖),如果高架橋高CD=6米,匝道BD和AD每米造價均為4 000元,那么設計優(yōu)化后修建匝道AD的投資將增加多少元?(參考數(shù)據(jù):sin5°≈0.08,sin15°≈0.25,tan5°≈0.09,tan15°≈0.27,結果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商人制成了一個如圖所示的轉盤,取名為“開心大轉盤”,游戲規(guī)定:參與者自由轉動轉盤,轉盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉動轉盤80次,你認為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】班長小李對他所在班級(八年級班)全體同學的業(yè)余興趣愛好進行了一次調(diào)查,據(jù)采集到的數(shù)據(jù)繪制了下面的統(tǒng)計圖表,根據(jù)調(diào)查他想寫一個調(diào)查報告交給學校,建議學校根據(jù)學生的個人興趣愛好,適當?shù)陌才乓恍┨亻L培養(yǎng)或合理安排學生在校期間的課余活動,請你根據(jù)圖中提供的信息,幫助小李完成信息采集.
(1)該班共有學生_____人;
(2)在圖1中,請將條形統(tǒng)計圖補充完整;
(3)在圖2中,在扇形統(tǒng)計圖中,“音樂”部分所對應的圓心角的度數(shù)_____度;
(4)求愛好“書畫”的人數(shù)占該班學生數(shù)的百分數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】佳佳商場賣某種衣服每件的成本為元,據(jù)銷售人員調(diào)查發(fā)現(xiàn),每月該衣服的銷售量(單位:件)與銷售單價(單位:元/件)之間存在如圖中線段所示的規(guī)律:
(1)求與之間的函數(shù)關系式,并寫出的取值范圍;
(2)若某月該商場銷售這種衣服獲得利潤為元,求該月這種衣服的銷售單價為每件多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:正方形ABCD中,AB=4,E為CD邊中點,F為AD邊中點,AE交BD于G,交BF于H,連接DH.
(1)求證:BG=2DG;
(2)求AH:HG:GE的值;
(3)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com