【題目】如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_____

【答案】(2,3)

【解析】

ACx軸于C,作A′C′x軸,垂足分別為C、C′,證明ABC≌△BAC,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結(jié)果.

如圖,作ACx軸于C,作A′C′x軸,垂足分別為C、C′,

∵點(diǎn)A、B的坐標(biāo)分別為(-2,1)、(1,0),

AC=2,BC=2+1=3,

∵∠ABA=90°,

ABC+ABC=90°,

∵∠BAC+ABC=90°,

∴∠BAC=ABC,

BA=BA,ACB=BCA,

∴△ABC≌△BAC

OC=OB+BC=1+1=2,A′C′=BC=3,

∴點(diǎn)A′的坐標(biāo)為(2,3).

故答案為(2,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,CAB延長線上一點(diǎn),CD⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D

1)求證:AE平分∠DAC;

2)若AB=4∠ABE=60°

AD的長;

求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動(dòng)共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校名學(xué)生參加植樹活動(dòng),要求每人植棵,活動(dòng)結(jié)束后隨機(jī)抽查了名學(xué)生每人的植樹量,并分為四種類型,棵;;棵;棵,棵。將各類的人繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤。

回答下列問題:

1)寫出條形圖中存在的錯(cuò)誤,并說明理由.

2)寫出這名學(xué)生每人植樹量的眾數(shù)、中位數(shù).

3)在求這名學(xué)生每人植樹量的平均數(shù).

4)估計(jì)這名學(xué)生共植樹多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°.點(diǎn)OAB的中點(diǎn),邊AC6,將邊長足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點(diǎn)為點(diǎn)E,另?xiàng)l直角邊與BC相交,交點(diǎn)為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CDCE的長度之和為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、AC分別是O的直徑和弦,ODAC于點(diǎn)D.過點(diǎn)A作O的切線與

OD的延長線交于點(diǎn)P,PC、AB的延長線交于點(diǎn)F.

(1)求證:PC是O的切線;

(2)若ABC=60°,AB=10,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是 三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成;第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成按照此規(guī)律,第個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和為 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=﹣x2+x+c與x軸交于點(diǎn)M(x1,0)N(x2,0)兩點(diǎn),與y軸交于點(diǎn)H.

(1)若∠HMO=45°,∠MHN=105°時(shí),求函數(shù)解析式;

(2)若|x1|2+|x2|2=1,當(dāng)點(diǎn)Q(b,c)在直線上時(shí),求二次函數(shù)y=﹣x2+x+c的解析式.

查看答案和解析>>

同步練習(xí)冊答案