【題目】如圖,在△ABC中,∠C=,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線交BC于點(diǎn)E.
(1)求證:∠EDB=∠B.
(2)若sinB=,AB=10,OA=2,求線段DE的長.
【答案】(1)見解析;(2)4.75
【解析】分析:(1)、連接OD,根據(jù)切線的性質(zhì)得出∠ODA+∠EDB=,根據(jù)三角形內(nèi)角和定理得出∠A+∠B=,根據(jù)OA=OD得出∠A=∠ODA,從而得出答案;(2)、連接OE,根據(jù)三角函數(shù)得出AC的長度,根據(jù)勾股定理得出BC的值,設(shè)DE=x,則BE=DE=x,CE=8-x,根據(jù)得出答案.
詳解:(1)解:連結(jié)OD,
∵DE與⊙O相切于點(diǎn)D,∴OD⊥DE. ∴∠ODE=. ∴∠ODA+∠EDB=.
∵∠C=, ∴∠A+∠B=. ∵OA=OD, ∴∠A=∠ODA. ∴∠EDB=∠B.
(2)連結(jié)OE, ∵∠EDB=∠B, ∴EB=ED. ∵AB=10,sinB==, ∴AC=6.
由勾股定理,得BC=8. 設(shè)DE=x,則EB=ED=x,CE=8-x.
∵∠C=∠ODE =, ∴.
∴, ∴, 即DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)C的坐標(biāo)為(﹣1,1),將Rt△ABC按一定的規(guī)律變換:第一次,將Rt△ABC沿AC邊翻折,得Rt△AB1C;第二次,將Rt△AB1C繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得Rt△A1B1C1;第三次,將Rt△A1B1C1沿A1C1邊翻折,得Rt△A1B2C1;第四次,將Rt△A1B2C1繞點(diǎn)B2逆時(shí)針90°,得Rt△A2B2C2…如此依次下去
(1)試在圖中畫出Rt△A1B1C1和Rt△A2B2C2 , 并寫出A1的坐標(biāo) ;
(2)請直接寫出在第11次變換后所得的點(diǎn)B的對(duì)應(yīng)的點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是面積為1的等邊三角形。取BC邊中點(diǎn)E,作ED∥AB,
EF∥AC,得到四邊形EDAF,它的面積記做S1;取BE中點(diǎn)G,做GH∥FB,GK∥EF,
得到四邊形GHFK,它的面積記作S2.照此規(guī)律作下去,
則S2018=__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點(diǎn),F是CD上一點(diǎn),且CF=CD,求證:∠AEF=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校假期由校長帶領(lǐng)該校“三好學(xué)生”去旅游,甲旅行社說“若校長買全票一張,則學(xué)生半價(jià).”乙旅行社說“全部人六折優(yōu)惠”若全票價(jià)是1200元,則:
(1)若學(xué)生人數(shù)是20人,甲、乙旅行社收費(fèi)分別是多少?
(2)當(dāng)學(xué)生人數(shù)的多少時(shí),兩家旅行社的收費(fèi)一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)(1)班現(xiàn)要從A、B兩位男生和D、E兩位女生中,選派學(xué)生代表本班參加全校“中華好詩詞”大賽.
(1)如果選派一位學(xué)生代表參賽,那么選派到的代表是A的概率 ;
(2)如果選派兩位學(xué)生代表參賽,求恰好選派一男一女兩位同學(xué)參賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,O為坐標(biāo)原點(diǎn),橫、縱軸的單位長度相同,A、B的坐標(biāo)分別為(8,6),(16,0),點(diǎn)P沿OA邊從點(diǎn)O開始向終點(diǎn)A運(yùn)動(dòng),速度每秒1個(gè)單位,點(diǎn)Q沿BO邊從B點(diǎn)開始向終點(diǎn)O運(yùn)動(dòng),速度每秒2個(gè)單位,如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)。求:
(1)幾秒時(shí)PQ∥AB.
(2)設(shè)△OPQ的面積為y,求y與t的函數(shù)關(guān)系式.
(3)△OPQ與△OAB能否相似?若能,求出點(diǎn)P的坐標(biāo),若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在陽光體育活動(dòng)時(shí)間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場.
(1)如果確定小亮打第一場,再從其余三人中隨機(jī)選取一人打第一場,求恰好選中大剛的概率;
(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時(shí)伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機(jī)的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com