【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的部分商業(yè)連鎖店進(jìn)行評(píng)估,將抽取的各商業(yè)連鎖店按照評(píng)估成績(jī)分成了A、B、C、D四個(gè)等級(jí),并繪制了如圖不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)本次評(píng)估隨即抽取了多少甲商業(yè)連鎖店?
(2)請(qǐng)補(bǔ)充完整扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);
(3)從A、B兩個(gè)等級(jí)的商業(yè)連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求其中至少有一家是A等級(jí)的概率.
【答案】
(1)解:2÷8%=25(家),
即本次評(píng)估隨即抽取了25家商業(yè)連鎖店
(2)解:25﹣2﹣15﹣6=2,2÷25×100%=8%,
補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,
如圖所示:
(3)解:畫樹狀圖,
共有12個(gè)可能的結(jié)果,至少有一家是A等級(jí)的結(jié)果有10個(gè),
∴P(至少有一家是A等級(jí))= = .
【解析】(1)根據(jù)A級(jí)的人數(shù)和所占的百分比求出總?cè)藬?shù);(2)求出B級(jí)的人數(shù)所占的百分比,補(bǔ)全圖形即可;(3)畫出樹狀圖,由概率公式即可得出答案.
【考點(diǎn)精析】本題主要考查了扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識(shí)點(diǎn),需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0, ).
(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1 , △BA′O的面積為S2 , S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,MP和NQ分別垂直平分AB和AC.
(1)若△APQ的周長(zhǎng)為12,求BC的長(zhǎng);
(2)∠BAC=105°,求∠PAQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若∠AGB=∠EHF,∠C=∠D.
求證:∠A=∠F.
證明:∵∠AGB=∠EHF
∠AGB=___________(對(duì)頂角相等)
∴∠EHF=∠DGF
∴DB∥EC(____________________________________)
∴∠_________=∠DBA(________________________________)
又∵∠C=∠D
∴∠DBA=∠D
∴DF∥_______(__________________________________)
∴∠A=∠F(__________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及平行四邊形ABDC的面積.
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使=2,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.
(3)點(diǎn)P是四邊形ABCD邊上的點(diǎn),若△OPC為等腰三角形時(shí),直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角形向右平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,則平移后三個(gè)頂點(diǎn)的坐標(biāo)分別是( )
A. (2,2),(3,4),(1,7) B. (2,2),(4,3),(1,7)
C. (-2,2),(3,4),(1,7) D. (2,-2),(4,3),(1,7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B(4,0),與過A點(diǎn)的直線相交于另一點(diǎn)D(3, ),過點(diǎn)D作DC⊥x軸,垂足為C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P在線段OC上(不與點(diǎn)O、C重合),過P作PN⊥x軸,交直線AD于M,交拋物線于點(diǎn)N,連接CM,求△PCM面積的最大值;
(3)若P是x軸正半軸上的一動(dòng)點(diǎn),設(shè)OP的長(zhǎng)為t,是否存在t,使以點(diǎn)M、C、D、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列說法:①若DE∥AB,則∠DEF+∠EFB=180;
②能與∠DEF構(gòu)成內(nèi)錯(cuò)角的角的個(gè)數(shù)有2個(gè);③能與∠BFE構(gòu)
成同位角的角的個(gè)數(shù)有2個(gè);④能與∠C構(gòu)成同旁內(nèi)角的角的個(gè)數(shù)有4個(gè).其中結(jié)論正確的是( )
A. ①② B. ③④ C. ①③④ D. ①②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com