【題目】某校為了了解學(xué)生在校吃午餐所需時(shí)間的情況,抽查了20名同學(xué)在校吃午餐所花的時(shí)間,獲得如下數(shù)據(jù)(單位:min):

10,12,15,10,16,18,19,18,20,38,

22,25,20,18,18,20,15,16,21,16.

(1)若將這些數(shù)據(jù)分為6組,請列出頻數(shù)表,畫出頻數(shù)直方圖;

(2)根據(jù)頻數(shù)直方圖,你認(rèn)為校方安排學(xué)生吃午餐時(shí)間多長為宜?請說明理由.

【答案】(1)見解析;(2)校方安排學(xué)生吃午餐時(shí)間25 min左右為宜,因?yàn)榧s有90%的學(xué)生在25 min內(nèi)可以就餐完畢

【解析】

(1)找出20名學(xué)生在校午餐所需的時(shí)間的最大值與最小值,根據(jù)(最大值-最小值)÷6可得到組距.然后根據(jù)組距列出頻數(shù)表,畫出頻數(shù)直方圖.

(2)由(1)分析即可得解.

(1)

組別(min)

劃記

頻數(shù)

9.5~14.5

3

14.5~19.5

正正

10

19.5~24.5

5

24.5~29.5

1

29.5~34.5

0

34.5~39.5

1

(2)校方安排學(xué)生吃午餐時(shí)間25 min左右為宜,因?yàn)榧s有90%的學(xué)生在25 min內(nèi)可以就餐完畢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1 , y1),B(x2 , y2),AB中點(diǎn)P的坐標(biāo)為(xp , yp).由xp﹣x1=x2﹣xp , 得xp= ,同理yp= ,所以AB的中點(diǎn)坐標(biāo)為( ).由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A、B兩點(diǎn)間的距離公式為AB= .這兩公式對A、B在平面直角坐標(biāo)系中其它位置也成立.解答下列問題:

(1)已知M(1,﹣2),N(﹣1,2),直接利用公式填空:MN中點(diǎn)坐標(biāo)為 , MN=
(2)如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過P作x軸的垂線交拋物線于點(diǎn)C.

(a)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(b)連結(jié)AB、AC,求證△ABC為直角三角形;
(c)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,D、F是AB邊上的兩點(diǎn),以DF為直徑的⊙O與BC相交于點(diǎn)E,連接EF,過F作FG⊥BC于點(diǎn)G,其中∠OFE= ∠A.
(1)求證:BC是⊙O的切線;
(2)若sinB= ,⊙O的半徑為r,求△EHG的面積(用含r的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E,F(xiàn)分別在BC,AB上,點(diǎn)M在BA的延長線上,且CE=BF=AM,過點(diǎn)M,E分別作NM⊥DM,NE⊥DE交于N,連接NF.
(1)求證:DE⊥DM;
(2)猜想并寫出四邊形CENF是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘米,乙在A地時(shí)距地面的高度b為米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式.
(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD,EF相交于點(diǎn)O,OG是∠AOF的平分線,∠BOD=35°,COE=18°,則∠COG的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以長方形OBCD的頂點(diǎn)O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,B點(diǎn)坐標(biāo)為(0,a),C點(diǎn)坐標(biāo)為(c,b),且a、b、C滿足+|2b+12|+(c﹣4)2=0.

(1)求B、C兩點(diǎn)的坐標(biāo);

(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿O→B→C的路線以每秒2個(gè)單位長度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,DC上有一點(diǎn)M(4,﹣3),用含t的式子表示三角形OPM的面積;

(3)當(dāng)t為何值時(shí),三角形OPM的面積是長方形OBCD面積的?直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在長方形ABCD中,點(diǎn)EAD的中點(diǎn),連結(jié)BE,將ABE沿著BE翻折得到FBE,EFBC于點(diǎn)H,延長BF、DC相交于點(diǎn)G,若DG=16,BC=24,則AB=________

查看答案和解析>>

同步練習(xí)冊答案