【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1 , 0),B(x2 , 0)(0<x1<x2)兩點,與y軸交于點C.
(1)設(shè)AB=2,tan∠ABC=4,求該拋物線的解析式;
(2)在(1)中,若點D為直線BC下方拋物線上一動點,當△BCD的面積最大時,求點D的坐標;
(3)是否存在整數(shù)a,b使得1<x1<2和1<x2<2同時成立,請證明你的結(jié)論.
【答案】
(1)
解:∵tan∠ABC=4
∴可以假設(shè)B(m,0),則A(m﹣2,0),C(0,4m),
∴可以假設(shè)拋物線的解析式為y=4(x﹣m)(x﹣m+2),
把C(0,4m)代入y=4(x﹣m)(x﹣m+2),得m=3,
∴拋物線的解析式為y=4(x﹣3)(x﹣1),
∴y=4x2﹣16x+12
(2)
解:如圖,設(shè)P(m,4m2﹣16m+12).作PH∥OC交BC于H.
∵B(3,0),C(0,12),
∴直線BC的解析式為y=﹣4x+12,
∴H(m,﹣4m+12),
∴S△PBC=S△PHC+S△PHB= (﹣4m+12﹣4m2+16m﹣12)3=﹣6(m﹣ )2+ ,
∵﹣6<0,
∴m= 時,△PBC面積最大,
此時P( ,﹣3)
(3)
解:不存在.
理由:假設(shè)存在.由題意可知,
且1<﹣ <2,
∴4<a<8,
∵a是整數(shù),
∴a=5 或6或7,
當a=5時,代入不等式組,不等式組無解.
當a=6時,代入不等式組,不等式組無解.
當a=7時,代入不等式組,不等式組無解.
綜上所述,不存在整數(shù)a、b,使得1<x1<2和1<x2<2同時成立
【解析】(1)由tan∠ABC=4,可以假設(shè)B(m,0),則A(m﹣2,0),C(0,4m),可得拋物線的解析式為y=4(x﹣m)(x﹣m+2),把C(0,4m)代入y=4(x﹣m)(x﹣m+2),求出m的值即可解決問題;(2)設(shè)P(m,4m2﹣16m+12).作PH∥OC交BC于H,根據(jù)S△PBC=S△PHC+S△PHB構(gòu)建二次函數(shù),理由二次函數(shù)的性質(zhì)解決問題;(3)不存在.假設(shè)存在,由題意由題意可知, 且1<﹣ <2,首先求出整數(shù)a的值,代入不等式組,解不等式組即可解決問題.
【考點精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017黑龍江省齊齊哈爾市,第25題,10分)“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關(guān)系如圖,請結(jié)合圖象,解答下列問題:
(1)a= ,b= ,m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項目”對全班學(xué)生進行調(diào)查(每名學(xué)生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.
根據(jù)以上信息解決下列問題:
(1) , ;
(2)扇形統(tǒng)計圖中機器人項目所對應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項目的 名學(xué)生中隨機選取 名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的 名學(xué)生中恰好有 名男生、 名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點D是BC的中點作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點D逆時針方向旋轉(zhuǎn),
判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;
若,當AE取最大值時,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(13分)(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF=∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?
(3)如圖3,點A在點O的北偏西30°處,點B在點O的南偏東70°處,且AO=BO,點A沿正東方向移動249米到達E處,點B沿北偏東50°方向移動334米到達點F處,從點O觀測到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD= ∠BAC=60°,于是 = = ; 遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點在同一條直線上,連接BD.
(1)①求證:△ADB≌△AEC;②請直接寫出線段AD,BD,CD之間的等量關(guān)系式;
(2)拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點D在AB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當AC=6,CP=3時,求sin∠PAB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com