【題目】如圖所示,中,,點(diǎn)上一點(diǎn),于點(diǎn)于點(diǎn)

1)若,則   °;

2)若點(diǎn)的中點(diǎn),求證:

【答案】(1) 70;(2)見解析

【解析】

1)求得∠A的度數(shù)即可;
2)連接FB,根據(jù)AB=BC,且點(diǎn)FAC的中點(diǎn),得到BFAC,∠ABF=CBF=ABC,證得∠CFD=CBF后即可證得∠CFD=ABC

1)∵∠AFD=160°,∴∠DFC=20°,∵DFBC,DEAB,

∴∠FDC=AED=90°,在RtEDC中,∴∠C=90°20°=70°,∵AB=BC

∴∠C=A=70°,故答案為:70

2)連接BF

AB=BC,且點(diǎn)FAC的中點(diǎn),

BFAC,∠ABF=CBF=ABC,

∴∠CFD+BFD=90°,∠CBF+BFD=90°

∴∠CFD=CBF,∴∠CFD=ABC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫推理理由:

如圖,CDEF,1=2,求證:∠3=ACB

證明:∵CDEF,

∴∠DCB=2           ),

∵∠1=2,

∴∠DCB=1         ).

GDCB        ),

∴∠3=ACB      ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C在⊙O上,∠A=36°,∠C=28°,則∠B=( )

A.100°
B.72°
C.64°
D.36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,則下列條件中,不能使△ABC≌△DBC成立的是 ( 。

A. ABCD B. ACBD C. A=∠D D. ABC=∠DCB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都市的水費(fèi)實行下表的收費(fèi)方式:

每月用水量

單價

不超出(包括

2/

超出但不超出(包括)的部分

3/

超出的部分

4/

1)周老師家九月份用了的水,應(yīng)付多少水費(fèi)?

2)如果李老師家九月份的用水量為,那么應(yīng)付的水費(fèi)為多少元?

3)如果曹老師家九月和十月一共用了的水,且已知九月比十月少,設(shè)九月用水量為,那么曹老師這兩個月一共要交多少錢的水費(fèi)?(可用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)內(nèi),,,點(diǎn)外,,

1)求的度數(shù);

2)判斷的形狀并加以證明;

3)連接,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,AECF,且分別交對角線BD于點(diǎn)E,F

(1)求證:AEB≌△CFD

(2)連接AF,CE,若∠AFE=CFE,求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長一定的正方形ABCD,Q為CD上一個動點(diǎn),AQ交BD于點(diǎn)M,過M作MN⊥AQ交BC于點(diǎn)N,作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP= BD;③BN+DQ=NQ;④ 為定值.其中一定成立的是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京廣高速鐵路工程指揮部,要對某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個工程隊的投標(biāo)書.從投標(biāo)書中得知:甲隊單獨(dú)完成這項工程所需天數(shù)是乙隊單獨(dú)完成這項工程所需天數(shù)的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天完成.

(1)求甲、乙兩隊單獨(dú)完成這項工程各需多少天?

(2)已知甲隊每天的施工費(fèi)用為8.4萬元,乙隊每天的施工費(fèi)用為5.6萬元.工程預(yù)算的施工費(fèi)用為500萬元.為縮短工期并高效完成工程,擬安排預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬元?請給出你的判斷并說明理由.

查看答案和解析>>

同步練習(xí)冊答案