【題目】點 P(-2,4)關(guān)于 y 軸的對稱點 P'在反比例函數(shù) y=(k≠0)的圖象上.
(1)求此反比例函數(shù)關(guān)系式;
(2)當(dāng) x 在什么范圍取值時,y 是小于 1 的正數(shù)?
【答案】(1)y=;(2)x>8;
【解析】
(1)先求出點P(-2,4)關(guān)于y軸的對稱點P′的坐標(biāo),把點P′的坐標(biāo)代入反比例函數(shù)y=(k≠0)即可求出k的值,進(jìn)而得出反比例函數(shù)的解析式;
(2)根據(jù)y是小于1的正數(shù)列出關(guān)于x的不等式組,求出x的取值范圍即可.
(1)∵點P(-2,4)與點P′關(guān)于y軸對稱,
∴P′(2,4),
∵點P′在反比例函數(shù)y=(k≠0)的圖象上,
∴4=,解得k=8,
∴反比例函數(shù)的關(guān)系式為:y=;
(2)∵y是小于1的正數(shù),
∴0<<1,解得x>8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們可用表示以為自變量的函數(shù),如一次函數(shù),可表示為,且,,定義:若存在實數(shù),使成立,則稱為的不動點,例如:,令,得,那么的不動點是1.
(1)已知函數(shù),求的不動點.
(2)函數(shù)(是常數(shù))的圖象上存在不動點嗎?若存在,請求出不動點;若不存在,請說明理由;
(3)已知函數(shù)(),當(dāng)時,若一次函數(shù)與二次函數(shù)的交點為,即兩點的橫坐標(biāo)是函數(shù)的不動點,且兩點關(guān)于直線對稱,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=8cm,C是線段AB上一點,AC=3.2cm,M是AB的中點,N是AC的中點.
(1)求線段CM的長;
(2)求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為直徑,AB=4,C、D為圓上兩個動點,N為CD中點,CM⊥AB于M,當(dāng)C、D在圓上運(yùn)動時保持∠CMN=30°,則CD的長( )
A. 隨C、D的運(yùn)動位置而變化,且最大值為4 B. 隨C、D的運(yùn)動位置而變化,且最小值為2
C. 隨C、D的運(yùn)動位置長度保持不變,等于2 D. 隨C、D的運(yùn)動位置而變化,沒有最值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設(shè)小正方形的邊長為x厘米.
(1)當(dāng)矩形紙板ABCD的一邊長為90厘米時,求紙盒的側(cè)面積的最大值;
(2)當(dāng)EH:EF=7:2,且側(cè)面積與底面積之比為9:7時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點C在線段AB上,若BC=AC,則稱點C是線段AB的一個圓周率點.
如圖,已知點C是線段AB的一個靠近點A的圓周率點,AC=3.
(1)AB= ;(結(jié)果用含的代數(shù)式表示)
(2)若點D是線段AB的另一個圓周率點(不同于點C),則CD= ;
(3)若點E在線段AB的延長線上,且點B是線段CE的一個圓周率點.求出BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)y=-x+3,下列說法錯誤的是( 。
A.圖象經(jīng)過點(2,2)B.y隨著x的增大而減小
C.圖象與y軸的交點是(6,0)D.圖象與坐標(biāo)軸圍成的三角形面積是9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)陣是由50個偶數(shù)排成的.
(1)在數(shù)陣中任意做一類似于圖中的框,設(shè)其中最小的數(shù)為x,那么其他3個數(shù)怎樣表示?
(2)如果這四個數(shù)的和是172,能否求出這四個數(shù)?
(3)如果擴(kuò)充數(shù)陣的數(shù)據(jù),框中的四個數(shù)的和可以是2019嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com