【題目】如圖,矩形ABCD中,AC=4,AB=2,將矩形ABCD繞點A旋轉(zhuǎn)得到矩形AB'C'D',使點B的對應點B'落在AC上,B'C'交AD于點E,在B'C'上取點F,使B'F=AB.
(1)求證:AE=C'E;
(2)求BF的長.
【答案】(1)見解析;(2)BF=+.
【解析】
(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折疊的性質(zhì)得到一對角相等,利用等角對等邊即可得證;
(2)連接AF,過A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B為等邊三角形,分別利用三角函數(shù)定義求出MF與AM,根據(jù)AM=BM,即BM+MF=BF即可求出.
(1)證明:∵在Rt△ABC中,AC=2AB,
∴∠ACB=∠AC′B′=30°,∠BAC=60°,
由旋轉(zhuǎn)可得:AB′=AB,∠B′AC′=∠BAC=60°,
∴∠EAC′=∠AC′B′=30°,
∴AE=C′E;
(2)連接AF,過A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B為等邊三角形,
∴∠AFB′=45°,
∴∠AFM=30°,∠ABF=45°,
在Rt△AMF中,AM=BM=ABcos∠ABM=2×,
在Rt△AMF中,MF=,
則BF=+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=﹣x與反比例函數(shù)y=的圖象交于關(guān)于原點對稱的A,B兩點,已知A點的縱坐標是3.
(1)求反比例函數(shù)的表達式;
(2)將直線y=﹣x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=1,點P在線段AB上運動,設(shè)AP=,現(xiàn)將紙片折疊,使點D與點P重合,得折痕EF(點E、F為折痕與矩形邊的交點),再將紙片還原.
(1)當=0時,折痕EF的長為 ;當點E與點A重合時,折痕EF的長為 ;
(2)請寫出使四邊形EPFD為菱形的的取值范圍,并求出當=2時菱形的邊長;
(3)令EF2=,當點E在AD、點F在BC上時,寫出與的函數(shù)關(guān)系式.當取最大值時,判斷△EAP與△PBF是否相似?若相似,求出的值;若不相似,請說明理由.溫馨提示:用草稿紙折折看,或許對你有所幫助哦!
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】好街坊櫥具店購進電飯煲和電壓鍋兩種電器進行銷售,其進價與售價如表:
進價(元/臺) | 售價(元/臺) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購進這兩種電器共 30 臺,用去了 5520 元,并且全部售完,問櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度櫥具店決定用不超過 8850 元的資金采購電飯煲和電壓鍋共 50 臺,且電飯煲的利潤不少于電壓鍋的利潤的,問櫥具店有哪幾種進貨方案?并說明理由;
(3)在(2)的條件下,請你通過計算判斷,哪種進貨方案櫥具店賺錢最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點,C是OB的中點,D是AB上一點,四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形中,,,,點在邊上,點在四邊形內(nèi)部且到邊、的距離相等,若要使是直角三角形且是等腰三角形,則__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為12的正方形中,對角線、交于點,點、分別為、邊上的動點,且始終保持,連接交于點.
(1)求證:;
(2)若,求的值;
(3)在運動的過程中,是否存在最大值?若存在,請求出的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,M是OA的中點,弦CD⊥AB于點M,過點D作DE⊥CA交CA的延長線于點E.
(1)連接AD,則∠OAD= °;
(2)求證:DE與⊙O相切;
(3)點F在上,∠CDF=45°,DF交AB于點N.若DE=3,求FN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com