在直角坐標(biāo)平面中,O為坐標(biāo)原點,二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點C,與x軸相交于A、B兩點(如圖),點C的坐標(biāo)為(0,-3),且BO=CO
(1)求出B點坐標(biāo)和這個二次函數(shù)的解析式;
(2)求△ABC的面積.
(1)∵BO=CO,且點C的坐標(biāo)為(0,-3),
∴點B的坐標(biāo)為:(3,0);
把點B,C的坐標(biāo)分別代入二次函數(shù)y=x2+bx+c得:
9+3b+c=0,c=-3,即得:b=-2,c=-3,
∴解析式為:y=x2-2x-3;

(2)由(1)得,令y=0可得x2-2x-3=0,解得x1=3,x2=-1,
即得點A的坐標(biāo)為(-1,0),
∴AB的長度為4,
∴S△ABC=
1
2
×AB×OC=
1
2
×4×3=6.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△OAB是邊長為4+2
3
的等邊三角形,其中O是坐標(biāo)原點,頂點B在y軸的正半軸上.將△OAB折疊,使點A與OB邊上的點P重合,折痕與OA、AB的交點分別是E、F.如果PEx軸,
(1)求點P、E的坐標(biāo);
(2)如果拋物線y=-
1
2
x2+bx+c經(jīng)過點P、E,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,從O點射出炮彈落地點為D,彈道軌跡是拋物線,若擊中目標(biāo)C點,在A測C的仰角∠BAC=45°,在B測C的仰角∠ABC=30°,AB相距(1+
3
)km,OA=2km,AD=2km.
(1)求拋物線解析式;
(2)求拋物線對稱軸和炮彈運行時最高點距地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=x+m和拋物線y=x2+bx+c都經(jīng)過點A(1,0),B(3,2).
(1)求m的值和拋物線的解析式;
(2)若該拋物線與x軸的另一個交點為C,與y軸交于點D,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-
3
交x軸于A(-3,0)、B(1,0)兩點,交y軸于點C,點D在拋物線上,且CDAB,對稱軸直線l交x軸于點M,連結(jié)CM,將∠CMB繞點M旋轉(zhuǎn),旋轉(zhuǎn)后的兩邊分別交直線BC、直線CD于點E、F.
(1)求拋物線的解析式;
(2)當(dāng)點E為BC中點時,射線MF與拋物線的交點坐標(biāo)是______;
(3)若ME=
13
CF,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=x2+bx+c圖象與x軸交于A,B兩點(A在B的左邊),與y軸交于點C,頂點為M,△MAB為直角三角形,圖象的對稱軸為直線x=-2,點P是拋物線上位于A,C兩點之間的一個動點,則△PAC的面積的最大值為( 。
A.
27
4
B.
11
2
C.
27
8
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某科研所投資200萬元,成功地研制出一種市場需求量較大的汽配零件,并投入資金700萬元進行批量生產(chǎn).已知每個零件成本20元.通過市場銷售調(diào)查發(fā)現(xiàn):當(dāng)銷售單價定為50元時,年銷售量為20萬件;銷售單價每增加1元,年銷售量將減少1000件.設(shè)銷售單價為x元,年銷售量為y(萬件),年獲利為z(萬元)
(1)試寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍)
(2)試寫出z與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍)
(3)當(dāng)銷售單價定為多少時,年獲利最多?并求出這個年利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場將每件進價為60元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加20件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設(shè)后來該商品每件降價x元,商場一天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤7000元,則每件商品應(yīng)降價多少元?
②求出y與x之間的函數(shù)關(guān)系式,并通過畫該函數(shù)圖象的草圖,觀察其圖象的變化趨勢,結(jié)合題意寫出當(dāng)x取何值時,商場獲利潤不少于7000元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

崇啟大橋使啟東市融入了上海一小時經(jīng)濟區(qū),為啟東經(jīng)濟的騰飛打下了堅實的基礎(chǔ),建成的大橋?qū)⑹鞘澜缟献铋L的斜拉索大橋,如圖,橋梁的兩條鋼纜具有相同的拋物線形狀,建立如圖所示的直角坐標(biāo)系,左邊的一條拋物線可以用y=0.0225x2+0.9x+10表示,而且左右兩條拋物線關(guān)于y軸對稱.
(1)鋼纜最低點到橋面的距離是多少?
(2)兩條鋼纜的最低點之間的距離是多少?
(3)寫出右邊鋼纜的拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案