【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位,設(shè)運(yùn)動(dòng)時(shí)間為t秒,過點(diǎn)P作PE⊥AO交AB于點(diǎn)E.
(1)求直線AB的解析式;
(2)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過程中,以B、Q、E為頂點(diǎn)的三角形是直角三角形,直按寫出t的值;
(3)設(shè)△PEQ的面積為S,求S與時(shí)間t的函數(shù)關(guān)系,并指出自變量t的取值范圍.
【答案】(1)y=﹣2x+4(2)2或(3)S=t2﹣t(2<t≤4)
【解析】
(1)依據(jù)待定系數(shù)法即可求得;
(2)根據(jù)直角三角形的性質(zhì)解答即可;
(3)有兩種情況:當(dāng)0<t<2時(shí),PF=4﹣2t,當(dāng)2<t≤4時(shí),PF=2t﹣4,然后根據(jù)面積公式即可求得;
(1)∵C(2,4),
∴A(0,4),B(2,0),
設(shè)直線AB的解析式為y=kx+b,
∴,
解得,
∴直線AB的解析式為y=﹣2x+4.
(2)當(dāng)以B、Q、E為頂點(diǎn)的三角形是直角三角形時(shí),P、E、Q共線,此時(shí)t=2,
當(dāng)以B、Q、E為頂點(diǎn)的三角形是直角三角形時(shí),EQ⊥BE時(shí),此時(shí)t=;
(3)如圖2,過點(diǎn)Q作QF⊥y軸于F,
∵PE∥OB,
∴,
∵AP=BQ=t,∴PE=t,AF=CQ=4﹣t,
當(dāng)0<t<2時(shí),PF=4﹣2t,
∴S=PEPF=×t(4﹣2t)=t﹣t2,
即S=﹣t2+t(0<t<2),
當(dāng)2<t≤4時(shí),PF=2t﹣4,
∴S=PEPF=×t(2t﹣4)=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在四邊形中,,、分別是、的中點(diǎn),連接并延長,分別與、的延長線交于點(diǎn)、,證明:.
請將證明的過程填寫完整:
證明:連接,取的中點(diǎn),連接、.
是的中點(diǎn),是的中點(diǎn),
________,_______,同理:_______,_______,
,,
又,,,.
(2)運(yùn)用上題方法解決下列問題:
問題一:如圖2,在四邊形中,與相交于點(diǎn),,、分別是、的中點(diǎn),連接,分別交、于點(diǎn)、,請判斷的形狀,并說明理由;
問題二:如圖3,在鈍角中,,點(diǎn)在上,、分別是、的中點(diǎn),連接并延長,與的延長線交于點(diǎn),連接,若,是直角三角形且,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點(diǎn) D 是邊 BC 上的點(diǎn)(與 B、C 兩點(diǎn)不重合),過點(diǎn) D作 DE∥AC,DF∥AB,分別交 AB、AC 于 E、F 兩點(diǎn),下列說法正確的是( )
A. 若 AD 平分∠BAC,則四邊形 AEDF 是菱形
B. 若 BD=CD,則四邊形 AEDF 是菱形
C. 若 AD 垂直平分 BC,則四邊形 AEDF 是矩形
D. 若 AD⊥BC,則四邊形 AEDF 是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問∠APC與α、β之間有何數(shù)量關(guān)系?請說明理由;
(3)在(2)的條件下,如果點(diǎn)P在B、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:材料一:對于任意的非零實(shí)數(shù)和正實(shí)數(shù),如果滿足是整數(shù),則稱是的一個(gè)“整商系數(shù)”, 例如:時(shí) ,則是的一個(gè)“整商系數(shù)”;時(shí), ,則也是的一個(gè)“整商系數(shù)”;
結(jié)論:一個(gè)非零實(shí)數(shù)有無數(shù)個(gè)整商系數(shù),其中最小的一個(gè)整商系數(shù)記為,例如: .
材料二:對于一元二次方程中,兩根有如下關(guān)系:, 應(yīng)用:
(1)若實(shí)數(shù)滿足,求的取值范圍;
(2)關(guān)于的方程的兩個(gè)根分別為,且滿足, 則的值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=CD=5厘米,AD=BC=4厘米. 動(dòng)點(diǎn)P從A出發(fā),以1厘米/秒的速度沿A→B運(yùn)動(dòng),到B點(diǎn)停止運(yùn)動(dòng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),以2厘米/秒的速度沿C→B→A運(yùn)動(dòng),到A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(t > 0),當(dāng)t=____________時(shí),S△ADP=S△BQD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)動(dòng)車出發(fā)前油箱內(nèi)有油,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升.油箱中余油量()與行駛時(shí)間()之間的函數(shù)關(guān)系如圖所示,根據(jù)圖回答問題:
(1)機(jī)動(dòng)車行駛后加油,途中加油 升:
(2)根據(jù)圖形計(jì)算,機(jī)動(dòng)車在加油前的行駛中每小時(shí)耗油多少升?
(3)如果加油站距目的地還有,車速為,要到達(dá)目的地,油箱中的油是否夠用?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB∥CD,直線a交AB、CD分別于點(diǎn)E、F,點(diǎn)M在EF上,P是直線CD上的一個(gè)動(dòng)點(diǎn),(點(diǎn)P不與F重合)
(1)當(dāng)點(diǎn)P在射線FC上移動(dòng)時(shí),∠FMP+∠FPM =∠AEF成立嗎?請說明理由。
(2)當(dāng)點(diǎn)P在射線FD上移動(dòng)時(shí),∠FMP+∠FPM與∠AEF有什么關(guān)系?并說明你的理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com