【題目】如圖,在正六邊形ABCDEF內(nèi)放入2008個點,若這2008個點連同正六邊形的六個頂點無三點共線,則該正六邊形被這些點分成互不重合的三角形共_____.

【答案】4020

【解析】

∵正六邊形ABCDEF內(nèi)放入2008個點,這2008個點連同正六邊形的六個頂點無三點共線,

∴共有2008+6=2014個點。

∵在正六邊形內(nèi)放入1個點時,該正六邊形被這個點分成互不重合的三角形共6個;即當n=1時,有6個;然后出現(xiàn)第2個點時,這個點必然存在于開始的6個中的某一個三角形內(nèi),然后此點將那個三角形又分成3個三角形,三角形數(shù)量便增加2個;又出現(xiàn)第3個點時,同理,必然出現(xiàn)在某個已存在的三角形內(nèi),然后又將此三角形1分為3,增加2…,

∴內(nèi)部的點每增加1個,三角形個數(shù)便增加2個。

于是我們得到一個等差數(shù)列:存在n個點時,三角形數(shù)目an=a1+(n1)d=6+2(n1)=2n+4(n1).

由題干知,2008個點的總數(shù)為a2008=2×2008+4=4020().

故答案為:4020.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點,連接EF,點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時,點Q從點D出發(fā),沿DB方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設(shè)運動時間為t(0<t<4)s,解答下列問題:

(1)求證:△BEF∽△DCB;

(2)當點Q在線段DF上運動時,若△PQF的面積為0.6cm2,求t的值;

(3)如圖2過點QQG⊥AB,垂足為G,當t為何值時,四邊形EPQG為矩形,請說明理由;

(4)當t為何值時,△PQF為等腰三角形?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,⊙O的半徑為rr0),若點P′在射線OP上,滿足OP′OP=r2,則稱點P′是點P關(guān)于⊙O反演點

如圖2,⊙O的半徑為4,點B⊙O上,∠BOA=60°OA=8,若點A′,B′分別是點A,B關(guān)于⊙O的反演點,求A′B′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上兩點、對應的數(shù)分別為-1、3,點為數(shù)軸上一動點,其對應的數(shù)為.

1)若點到點、點的距離相等,則點對應的數(shù)為 ;

2)利用數(shù)軸探究:找出滿足的所有值是 ;

3)當點以每秒6個單位長的速度從0點向右運動時,點以每秒6個單位長的速度向右運動,點以每秒鐘5個單位長的速度向右運動,問它們同時出發(fā),幾秒后點到點、點的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次越野賽跑中,當小明跑了1600m時,小剛跑了1450m,此后兩人分別調(diào)整速度,并以各自新的速度勻速跑,又過100s時小剛追上小明,200s時小剛到達終點,300s時小明到達終點.他們賽跑使用時間t(s)及所跑距離如圖s(m),這次越野賽的賽跑全程為 m?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為探測某座山的高度AB,某飛機在空中C處測得山頂A處的俯角為31°,此時飛機的飛行高度為CH=4千米;保持飛行高度與方向不變,繼續(xù)向前飛行2千米到達D處,測得山頂A處的俯角為50°,求此山的高度AB.(參考數(shù)據(jù):tan31°≈0.6,1an50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017山東省菏澤市,第20題,7分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象在第一象限交于A、B兩點,B點的坐標為(3,2),連接OAOB,過BBDy軸,垂足為D,交OAC,若OC=CA

(1)求一次函數(shù)和反比例函數(shù)的表達式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上A點表示數(shù),B點示數(shù),C點表示數(shù),是最小的正整數(shù),且滿足

(1)=__________,=__________,=__________;

(2)若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù)__________表示的點重合;

(3)若點A、點B和點C分別以每秒2個單位、1個單位長度和4個單位長度的速度在數(shù)軸上同時向左運動,假設(shè)秒鐘過后,A、B、C三點中恰有一點為另外兩點的中點,求的值;

(4)若點A、點B和點C分別以每秒2個單位、1個單位長度和4個單位長度的速度在數(shù)軸上同時向左運動時,小聰同學發(fā)現(xiàn):當點CB點右側(cè)時,BC+3AB的值是個定值,求此時的值.

查看答案和解析>>

同步練習冊答案