【題目】在等邊△ABC的外側(cè)作直線BD,作點(diǎn)A關(guān)于直線BD的對(duì)稱點(diǎn)A′,連接AA′交直線BD于點(diǎn)E,連接A′C交直線BD于點(diǎn)F.
(1)依題意補(bǔ)全圖1,已知∠ABD=30°,求∠BFC的度數(shù);
(2)如圖2,若60°<∠ABD<90°,判斷直線BD和A′C相交所成的銳角的度數(shù)是否為定值?若是,求出這個(gè)銳角的度數(shù);若不是,請(qǐng)說明理由.
【答案】
(1)解:補(bǔ)全的圖1如下所示:
連接BA′,
∵由已知可得,BD垂直平分AA′,∠ABD=30°,△ABC是等邊三角形,
∴△BA′A是等邊三角形,AA′∥BC且AA′=BC,A′A=A′B,
∴四邊形AA′BC是菱形,
∵∠ACB=60°,
∴∠BCE=30°
(2)解:直線BD和A′C相交所成的銳角的度數(shù)是定值,若下圖所示,
連接AF交BC于點(diǎn)G,
由已知可得,BA′=BA,BA=BC,F(xiàn)A′=FA,
則∠BA′A=∠BAA′,∠FA′A=∠FAA′,BA′=BC,
∴∠BA′C=∠BCA′,∠FA′B=∠FAB,
∴∠BCA′=∠FAB,
∵∠FGC=∠BGA,∠ABC=60°,
∴∠CFA=∠ABC=60°,
∵∠AFC+∠AFD+∠A′FD=180°,∠A′FD=∠AFD,
∴∠A′FD=60°,
即直線BD和A′C相交所成的銳角的度數(shù)是定值,這個(gè)銳角的度數(shù)是60°
【解析】(1)根據(jù)題意可以作出相應(yīng)的圖形,連接A′B,由題意可得到四邊形AA′BC是菱形,根據(jù)菱形的對(duì)角線平分每一組對(duì)角,可以得到∠BFC的度數(shù);(2)畫出相應(yīng)的圖形,根據(jù)對(duì)稱的性質(zhì)可以得到相等的線段和相等的角,由等邊△ABC,可以得到BC=BA,然后根據(jù)三角形內(nèi)角和是180°,可以推出直線BD和A′C相交所成的銳角的度數(shù),本題得以解決.
【考點(diǎn)精析】利用等邊三角形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)正數(shù)的兩個(gè)平方根分別是 3-x 和 2x+6 ,則 x 的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上一動(dòng)點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,再向右移動(dòng)7個(gè)單位長(zhǎng)度到達(dá)點(diǎn)C,若點(diǎn)C表示的數(shù)是2,則點(diǎn)A表示的數(shù)是( )
A.1
B.2
C.﹣1
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在固定線路上運(yùn)輸,擬用運(yùn)營(yíng)指數(shù)Q量化考核司機(jī)的工作業(yè)績(jī).Q = W + 100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n | 2 | 1 |
速度x | 40 | 60 |
指數(shù)Q | 420 | 100 |
(1)用含x和n的式子表示Q;
(2)當(dāng)x = 70,Q = 450時(shí),求n的值;
(3)若n = 3,要使Q最大,確定x的值;
(4)設(shè)n = 2,x = 40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420,若能,求出m的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果單項(xiàng)式6am+2b3與﹣4.3bna4的和仍是單項(xiàng)式,則﹣2mn的值為( )
A.6
B.﹣2
C.﹣12
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被3等分,指針落在每個(gè)扇形內(nèi)的機(jī)會(huì)均等.
(1)現(xiàn)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,停止后,指針指向1的概率為 ;
(2)小明和小華利用這個(gè)轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對(duì)雙方公平嗎?請(qǐng)用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com