(2010•牡丹江)一組數(shù)據(jù)3、4、9、x的平均數(shù)比它的唯一眾數(shù)大1,則x=   
【答案】分析:眾數(shù)可能是3,也可能是4,還可能是9,因此應(yīng)分三種情況進(jìn)行討論.
解答:解:當(dāng)眾數(shù)是3時,∵眾數(shù)比平均數(shù)小1,
(3+4+9+x)=4,解得x=0.
這組數(shù)據(jù)為:3,4,9,0,而數(shù)據(jù)有唯一眾數(shù),∴x≠0.
當(dāng)眾數(shù)是4時,∵眾數(shù)比平均數(shù)小1,
(3+4+9+x)=5,解得x=4,
當(dāng)眾數(shù)是9是,∵眾數(shù)比平均數(shù)小1,
(3+4+9+x)=10,解得x=24,而數(shù)據(jù)有唯一眾數(shù),∴x≠24.
所以x=4.
故填4.
點(diǎn)評:本題考查了眾數(shù)與平均數(shù)的定義.正確運(yùn)用分類討論的思想是解答本題的關(guān)鍵.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•牡丹江)去年,某校開展了主題為“健康上網(wǎng),綠色上網(wǎng)”的系列活動.經(jīng)過一年的努力,取得了一定的成效.為了解具體情況,學(xué)校隨機(jī)抽樣調(diào)查了初二某班全體學(xué)生每周上網(wǎng)所用時間,同時也調(diào)查了使用網(wǎng)絡(luò)的學(xué)生上網(wǎng)的最主要目的,并用得到的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖.請你根據(jù)圖中提供的信息,回答下列問題:
(1)在這次調(diào)查中,初二該班共有學(xué)生
55
55
人;
(2)如果該校初二有660名學(xué)生,估計每周上網(wǎng)時間超過4小時的初二學(xué)生大約有
84
84
人;
(3)請將圖2空缺部分補(bǔ)充完整,并計算這個班級使用網(wǎng)絡(luò)的學(xué)生中,每周利用網(wǎng)絡(luò)查找學(xué)習(xí)資料的學(xué)生有
23
23
人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省森工總局初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•牡丹江)如圖,矩形OABC在平面直角坐標(biāo)系中,若OA、OC的長滿足
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)把△ABC沿AC對折,點(diǎn)B落在點(diǎn)B′處,線段AB′與x軸交于點(diǎn)D,求直線BB′的解析式;
(3)在直線BB′上是否存在點(diǎn)P,使△ADP為直角三角形?若存在,請直接寫出P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省森工總局初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•牡丹江)如圖,反比例函數(shù)與正比例函數(shù)的圖象相交于A、B兩點(diǎn),過點(diǎn)A作AC⊥x軸于點(diǎn)C.若△ABC的面積是4,則這個反比例函數(shù)的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•牡丹江)如圖,矩形OABC在平面直角坐標(biāo)系中,若OA、OC的長滿足
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)把△ABC沿AC對折,點(diǎn)B落在點(diǎn)B′處,線段AB′與x軸交于點(diǎn)D,求直線BB′的解析式;
(3)在直線BB′上是否存在點(diǎn)P,使△ADP為直角三角形?若存在,請直接寫出P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省牡丹江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•牡丹江)如圖,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(-2,0).
(1)求此二次函數(shù)的解析式及點(diǎn)B的坐標(biāo);
(2)在拋物線上有一點(diǎn)P,滿足S△AOP=3,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案