【題目】隨著通訊市場(chǎng)競(jìng)爭(zhēng)的日益激烈,為了占領(lǐng)市場(chǎng),甲公司推出的優(yōu)惠措施是:每分鐘降低元后,再下調(diào);乙公司推出的優(yōu)惠措施是:每分鐘下調(diào)后,再降低元.已知甲、乙兩公司原來每分鐘收費(fèi)標(biāo)準(zhǔn)相同,都是元.
(1)用含,的式子表示甲、乙兩公司推出優(yōu)惠措施后每分鐘的收費(fèi)標(biāo)準(zhǔn);
(2)推出優(yōu)惠措施后哪家公司的收費(fèi)便宜?請(qǐng)說明理由.
【答案】(1)甲為;乙為;(2)乙公司的收費(fèi)便宜,見解析
【解析】
(1)根據(jù)每分鐘降低a元再下調(diào)25%,得到甲公司的收費(fèi)標(biāo)準(zhǔn),根據(jù)每分鐘下調(diào)25%后,再降低a元,得到乙公司的收費(fèi)標(biāo)準(zhǔn);
(2)計(jì)算甲乙兩家公司的收費(fèi)標(biāo)準(zhǔn)的差,根據(jù)a>0,判斷哪家公司收費(fèi)便宜.
解:(1)甲公司每分鐘的收費(fèi)標(biāo)準(zhǔn)為
乙公司每分鐘的收費(fèi)標(biāo)準(zhǔn)為;
(2)乙公司的收費(fèi)便宜.
理由:因?yàn)?/span>,而由題意知,所以為正數(shù).即乙公司比甲公司每分鐘便宜元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1、2、3、4的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)抽取一個(gè)小球,記下數(shù)字為y.則小明、小華各取一次小球所確定的數(shù)x,y滿足y<的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克,且10≤x≤18)之間的函數(shù)關(guān)系如圖所示,該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少?列出關(guān)于x的方程是__________________.(不需化簡和解方程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天課間,頑皮的小明同學(xué)拿著老師的等腰直角三角板(AC=BC,∠ACB=90°)玩,不小心掉到兩根直立于地面的柱子(∠ADC=∠BEC=90°)之間,如圖所示,這一幕恰巧被數(shù)學(xué)老師看見了,于是有了下面這道題.
(1)求證:△ADC≌△CEB;
(2)如果每塊磚的厚度a=10cm,請(qǐng)你幫小明求出三角板ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E、F分別是AB、CD的中點(diǎn).
(1)求證:四邊形EBFD為平行四邊形;
(2)對(duì)角線AC分別與DE、BF交于點(diǎn)M、N.求證:△ABN≌△CDM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿著過AB中點(diǎn)D的直線折疊,使點(diǎn)A落在BC邊上的A1,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點(diǎn)D1的直線折疊,使點(diǎn)A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2:按上述方法不斷操作下去…,經(jīng)過第2019次操作后得到的折痕D2018E2018,到BC的距離記為h2019:若h1=1,則h2019的值為(____)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(2,0)的兩條直線,分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.
(1)求點(diǎn)B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BC=3cm,CD⊥AB,垂足為點(diǎn)D.在AC上取一點(diǎn)E,使EC=BC,過點(diǎn)E作EF⊥AC交CD的延長線于點(diǎn)F,若EF=7cm,則AE長為( ) .
A.1cmB.2 cmC.3cmD.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知∠A=60°,∠ABC的平分線BD與∠ACB的平分線CE相交于點(diǎn)O,∠BOC的平分線交BC于F,有下列結(jié)論:①∠BOE=60°,②∠ABD=∠ACE,③OE=OD,④BC=BE+CD。其中正確的是_________。(把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com