【題目】某校組織了一次環(huán)保知識競賽,每班選25名同學(xué)參加比賽,成績分別為A、B、C、D四個等級,其中相應(yīng)等級的得分依次記為100分、90分、80分、70分,學(xué)校將某年級的一班和二班的成績整理并繪制成統(tǒng)計圖,試根據(jù)以上提供的信息解答下列問題:
(1)把一班競賽成績統(tǒng)計圖補充完整;
(2)根據(jù)下表填空:a= ,b= ,c= ;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 | a | b | 90 |
二班 | 87.6 | 80 | c |
(3)請從平均數(shù)和中位數(shù)或眾數(shù)中任選兩個對這次競賽成績的結(jié)果進行分析.
【答案】(1)見解析;(2)87.6,90,100;(3)一班與二班的平均數(shù)相同,但是二班眾數(shù)為100分,一班眾數(shù)為90分,則二班成績較好,見解析
【解析】
(1)根據(jù)總?cè)藬?shù)為25人,求出等級C的人數(shù),補全條形統(tǒng)計圖即可;
(2)求出一班的平均分與中位數(shù)得到a與b的值,求出二班得眾數(shù)得到c的值即可;
(3)選擇平均數(shù)與眾數(shù)比較即可.
解:(1)根據(jù)題意得:一班中等級C的人數(shù)為(人),
補全條形統(tǒng)計圖,如圖所示:
(2)根據(jù)題意得:一班的平均分為(分),中位數(shù)為90分,
二班的眾數(shù)為100分,
則,b=90,c=100;
(3)一班與二班的平均數(shù)相同,但是二班眾數(shù)為100分,一班眾數(shù)為90分,
則二班成績較好.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC,D是BC上一點,E是平面上一點,且DE=AD,∠ADE=60°,連接CE.
(1)當點D是線段BC的中點時,如圖1.判斷線段BD與CE的數(shù)量關(guān)系,并說明理由;
(2)當點D是線段BC上任意一點時,如圖2.請找出線段AB,CE,CD三者之間的數(shù)量關(guān)系,并說明理由;
(3)當點D在線段BC的延長線上時,如圖3,若△ABC邊長為6,設(shè)CD=x,則線段CE= (用含x的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點O、B、C、A、P在同一平面內(nèi).
求:
(1)P到OC的距離.
(2)山坡的坡度tanα.
(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.
(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)
(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,以的一邊為邊畫等腰三角形,使得它的第三個頂點在的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多可畫幾個?( )
A.9個B.7個C.6個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知k為實數(shù),關(guān)于x的方程為x2﹣2(k+1)x+k2=0.
(1)請判斷x=﹣1是否可為此方程的根,說明理由.
(2)設(shè)方程的兩實根為x1,x2,當2x1+2x2+1=x1x2時,試求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com