如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,-2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求點C的坐標.

【答案】分析:(1)設直線AB的解析式為y=kx+b,將點A(1,0)、點B(0,-2)分別代入解析式即可組成方程組,從而得到AB的解析式;
(2)設點C的坐標為(x,y),根據(jù)三角形面積公式以及S△BOC=2求出C的橫坐標,再代入直線即可求出y的值,從而得到其坐標.
解答:解:(1)設直線AB的解析式為y=kx+b(k≠0),
∵直線AB過點A(1,0)、點B(0,-2),
,
解得
∴直線AB的解析式為y=2x-2.

(2)設點C的坐標為(x,y),
∵S△BOC=2,
•2•x=2,
解得x=2,
∴y=2×2-2=2,
∴點C的坐標是(2,2).
點評:本題考查了待定系數(shù)法求函數(shù)解析式,解答此題不僅要熟悉函數(shù)圖象上點的坐標特征,還要熟悉三角形的面積公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線AB與x軸交于點C,與反比例函數(shù)y=
kx
在第二象限的圖象交于點A(-2,6)、點B(-4,m).
(1)求k,m的值; (2)求直線AB的解析式; (3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB與x軸、y軸分別交于點A、B,AB=5,cos∠OAB=
4
5
,直線y=
4
3
x-1
分別與直精英家教網(wǎng)線AB、x軸、y軸交于點C、D、E.
(1)求證:∠OED=∠OAB;
(2)直線DE上是否存在點P,使△PBE與△AOB相似,若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,直線AB與x軸交于點A,與y軸交于點B.
(1)寫出A,B兩點的坐標;(2)求直線AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB與x軸、y軸分別相交于A、B兩點,將直線AB繞點O逆時針旋轉90°得到直線A1B1
(1)在圖中畫出直線A1B1
(2)求出直線A1B1的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB與x軸、y軸分別交于點A、B,點A的坐標是(2,0),∠ABO=30°.在坐標平面內(nèi),是否存在點P(除點O外),使得△APB與△AOB全等.請寫出所有符合條件的點P的坐標
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3

查看答案和解析>>

同步練習冊答案