【題目】如圖,鈍角的面積為12,最長(zhǎng)邊平分,點(diǎn)、分別是、上的動(dòng)點(diǎn),則的最小值是__________

【答案】3

【解析】

如圖(見解析),先根據(jù)等腰三角形的判定定理與性質(zhì)得出,從而將所求問題轉(zhuǎn)化為求直線外一點(diǎn)到已知直線的最短距離,確認(rèn)EQ即為最小值,再利用三角形的面積公式求解即可.

如圖,過點(diǎn)C,延長(zhǎng)COAB于點(diǎn)E,連接EM

平分

既是的角平分線,也是高

是等腰三角形,且

,BOCE的垂直平分線

因此,求的最小值,也就是求點(diǎn)EBC的最短距離

過點(diǎn)E,交BD于點(diǎn)P,則當(dāng)點(diǎn)P與點(diǎn)M、點(diǎn)Q與點(diǎn)N分別重合時(shí),取得最小值,最小值為(兩點(diǎn)之間線段最短、垂線段最短)

再過點(diǎn)C

在等腰中,由面積公式可得

,解得

的最小值為3,即的最小值為3

故答案為:3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)DAE⊥DC,垂足為EFAE與⊙O的交點(diǎn),AC平分∠BAE,連接OC

(1)求證:DE是⊙O的切線;

(2)若⊙O半徑為4,∠D=30°,求圖中陰影部分的面積(結(jié)果用含π和根號(hào)的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,點(diǎn)從點(diǎn)出發(fā),以每秒一個(gè)單位的速度沿的方向運(yùn)動(dòng);同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿的方向運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后兩點(diǎn)都停止運(yùn)動(dòng).設(shè)兩點(diǎn)運(yùn)動(dòng)的時(shí)間為.

1)當(dāng)______時(shí),兩點(diǎn)停止運(yùn)動(dòng);

2)當(dāng)為何值時(shí),是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的角平分線,過點(diǎn)DAB,AC兩邊作垂線,垂足分別為E,F(xiàn),那么下列結(jié)論中不一定正確的是(  )

A. BD=CD B. DE=DF C. AE=AF D. ADE=ADF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸=–1,P為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);

(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);

(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建全國(guó)衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾.若租用甲、乙兩車運(yùn)送,兩車各運(yùn)6趟可完成,需支付運(yùn)費(fèi)1800.已知甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,乙車所運(yùn)的趟數(shù)是甲車的1.5倍,且乙車每趟運(yùn)費(fèi)比甲車少100.

1)求甲、乙兩車單獨(dú)運(yùn)完此堆垃圾各需多少趟?

2)若單獨(dú)租用一臺(tái)車,租用哪臺(tái)車更合算,請(qǐng)你通過計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點(diǎn)上,過點(diǎn),分別與、交于、,過

求證:的切線;

相切于點(diǎn),的半徑為,,求長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,點(diǎn)EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1,BC3AE2,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A、∠B 、∠C、 D 的角平分線恰相交于一點(diǎn)P,記作△APD、△APB、△BPC、△DPC的面積分別為、、則下列關(guān)系式正確的是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案