【題目】在分別標(biāo)有號(hào)碼2,3,4…109個(gè)球中,隨機(jī)取出2個(gè)球,記下它們的號(hào)碼,則較大號(hào)能被較小號(hào)整除的概率是( )

A. B. C. D.

【答案】B

【解析】先利用列舉法得到所有36種等可能的結(jié)果數(shù),再找出較大標(biāo)號(hào)被較小標(biāo)號(hào)整除有(2,4)、(2,6)、(2,8)、(2,10)、(3,6),(3,9)、(4,8),(5,10),
然后根據(jù)概率公式求解.

在分別標(biāo)有號(hào)碼2、3、4、…10的9個(gè)球中,隨機(jī)取出兩個(gè)球,共有8+7+6+5+4+3+2+1=36種等可能的結(jié)果數(shù),其中較大標(biāo)號(hào)被較小標(biāo)號(hào)整除有(2,4)、(2,6)、(2,8)、(2,10)、(3,6),(3,9)、(4,8),(5,10),
所以較大標(biāo)號(hào)被較小標(biāo)號(hào)整除的概率==
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:,OB,OM,ON內(nèi)的射線.

如圖1,若OM平分,ON平分當(dāng)射線OB繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),______

也是內(nèi)的射線,如圖2,若,OM平分,ON平分,當(dāng)繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),求的大。

的條件下,若,當(dāng)O點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn)t秒,如圖3,若3,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是真命題的是( )

A. 有兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等

B. 兩條平行直線被第三條直線所截,則一組同旁內(nèi)角的平分線互相垂直

C. 三角形的一個(gè)外角等于兩個(gè)內(nèi)角的和

D. 等邊三角形既是中心對(duì)稱圖形,又是軸對(duì)稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等邊三角形,P為平面內(nèi)的一個(gè)動(dòng)點(diǎn),BP=BA,0<PBC<180 ,DB平分∠PBC,且DB=DA

1)當(dāng)BPBA重合時(shí)(如圖1),求∠BPD的度數(shù);

2)當(dāng)BP在∠ABC的內(nèi)部時(shí)(如圖2),求∠BPD的度數(shù);

3)當(dāng)BP在∠ABC的外部時(shí),請(qǐng)你直接寫出∠BPD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點(diǎn),向東為正方向,以1個(gè)單位長表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.

(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充好電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知將一矩形紙片ABCD折疊,使頂點(diǎn)AC重合,折痕為EF

(1)求證:CE=CF;

(2)若AB =8 cm,BC=16 cm,連接AF,寫出求四邊形AFCE面積的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,是由一個(gè)等邊ABE和一個(gè)矩形BCDE拼成的一個(gè)圖形,其點(diǎn)B,C,D的坐標(biāo)分別為(1,2),(1,1),(3,1).

(1)直接寫出E點(diǎn)和A點(diǎn)的坐標(biāo);

(2)試以點(diǎn)B為位似中心,作出位似圖形A1B1C1D1E1,使所作的圖形與原圖形的位似比為31;

(3)直接寫出圖形A1B1C1D1E1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )

A. A=∠D,∠B=∠E,∠C=∠FB. ABDE,BCEF,∠A=∠D

C. B=∠E90°,BCEFACDFD. A=∠D,ABDF,∠B=∠E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+3x軸、y軸相交于AB兩點(diǎn),點(diǎn)C在線段OA上,將線段CB繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CD,此時(shí)點(diǎn)D恰好落在直線AB上,過點(diǎn)DDEx軸于點(diǎn)E

1)求證:△BOC≌△CED;

2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當(dāng)B'C'經(jīng)過點(diǎn)D時(shí),求△BCD平移的距離及點(diǎn)D的坐標(biāo);

3)若點(diǎn)Py軸上,點(diǎn)Q在直線AB上,是否存在以C、D、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案