已知正方形OABC的面積為4,點O是坐標原點,點A在x軸上,點C在y軸上,點B在函數(shù)的圖象上,點P(m, n)是函數(shù)的圖象上任意一點.過點P分別作x軸、y軸的垂線,垂足分別為E、F.若設(shè)矩形OEPF和正方形OABC重合部分的面積為S.

(1)       求B點的坐標和k的值;

(2)       寫出S關(guān)于m的函數(shù)關(guān)系式;

(3)       當時,求點P的坐標.

 (1)B(2,2); k=4                                        

     

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C在y軸上,點B在函數(shù)y=
k
x
的圖象上,點P(m,n)是函數(shù)y=
k
x
(k>0,x>0)的圖象上的一點(與點B不重合),過點P分別作x軸、y軸的垂線,垂足分別為E、F精英家教網(wǎng).并設(shè)陰影部分為S.
(1)求B點坐標和k的值;
(2)求S關(guān)于m的函數(shù)關(guān)系式;
(3)當S=
9
2
時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•宜興市二模)如圖,已知正方形OABC的兩個頂點坐標分別是A(2,0),B(2,2).拋物線y=
1
2
x2-mx+
1
2
m2(m≠0)的對稱軸交x軸于點P,交反比例函數(shù)y=
k
x
(k>0)圖象于點Q,連接OQ.
(1)求拋物線的頂點坐標(用含m的代數(shù)式表示);
(2)當m=
1
2
k=2時,求證:△OPQ為等腰直角三角形;
(3)設(shè)反比例函數(shù)y=
k
x
(k>0)圖象交正方形OABC的邊BC、BA于M、N兩點,連接AQ、BQ,有S△ABQ=4S△APQ
①當M為BC邊的中點時,拋物線能經(jīng)過點B嗎?為什么?
②連接OM、ON、MN,試分析△OMN有可能為等邊三角形嗎?若可能,試求m+2k的值;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,拋物線y=-
23
x2+bx+c經(jīng)過點A,B,交正x軸于點D,E是OC上的動點(不與C重合)連接EB,過B點作BF⊥BE交y軸與F
(1)求b,c的值及D點的坐標;
(2)求點E在OC上運動時,四邊形OEBF的面積有怎樣的規(guī)律性?并證明你的結(jié)論;
(3)連接EF,BD,設(shè)OE=m,△BEF與△BED的面積之差為S,問:當m為何值時S最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知正方形OABC的面積為9,點B在函數(shù)y=
k
x
(k>0,x>0)
的圖象上,點P(m,n)(6≤m≤9)是函數(shù)y=
k
x
(k>0,x>0)
的圖象上動點,過點P分別作x軸、y軸的垂線,垂足分別為E、F,若設(shè)矩形OEPF和正方形OABC不重合的兩部分的面積和為S.
(1)求B點坐標和k的值;
(2)寫出S關(guān)于m的函數(shù)關(guān)系和S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(1),已知:正方形OABC,A、C分別在x軸、y軸上,點B在第一象限;將一直角三角板的直角頂點置于點B處,設(shè)兩直角邊(足夠長)分別交x軸、y軸于點E、F,連接EF.
(1)判斷CF與AE的大小關(guān)系,并說明理由.
(2)已知F(0,6),EF=10,求點B的坐標.
(3)如圖(2),已知正方形OABC的邊長為6,若將三角板的直角頂點移到BC的中點M處,旋轉(zhuǎn)三角板;當點F在OC邊上時,設(shè)CF=x,AE=y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案