【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點和點為圓心,為圓心,大于號的長為半徑面狐,兩弧交于點,:②做直線,且恰好經(jīng)過點,與交于點,連接,則的值為(

A. B. C. D.

【答案】B

【解析】

由作法得AE垂直平分CD,則∠AED=90°CE=DE,于是可判斷∠DAE=30°,∠D=60°,作EHBCH,從而得到∠ECH=60°,利用三角函數(shù)可求出EH、CH的值,再利用勾股定理即可求出BE的長.

解:如圖所示,作EHBCH,

由作法得AE垂直平分CD,

∴∠AED=90°,CE=DE2,

∵四邊形ABCD為菱形,

AD=2DE,

∴∠DAE=30°,

∴∠D=60°

AD//BC,

∴∠ECH=D=60°,

RtECH中,

EH=CE·sin60°=,

CH=CE·cos60°=,

BH=4+1=5,

RtBEH中,由勾股定理得,

.

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,,邊的中點,點是正方形內(nèi)一動點,,連接,將線段繞點逆時針旋轉(zhuǎn),連接,.

1)求證:;

2)若,,三點共線,連接,求線段的長.

3)求線段長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,ACBC,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,將△ABC繞點B順時針旋轉(zhuǎn),使點A旋轉(zhuǎn)至y軸的正半軸上的點A′處,若AOOB2,則陰影部分面積為(  )

A. πB. π1C. +1D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yx2+mx+n的圖象經(jīng)過點(﹣3,0),點(1,0

1)求拋物線解析式;(2)求拋物線的對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,AB為⊙O的直徑,弦CDAB于點E,在CD的延長線上取一點PPG與⊙O相切于點G,連接AGCD于點F

(Ⅰ)如圖①,若∠A20°,求∠GFP和∠AGP的大;

(Ⅱ)如圖②,若E為半徑OA的中點,DGAB,且OA2,求PF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)嘗試探究

如圖①,在中,,,點分別是邊、上的點,且.

的值為多少;②直線與直線的位置關(guān)系;

2)類比延伸

如圖②,若將圖①中的繞點順時針旋轉(zhuǎn),連接,則在旋轉(zhuǎn)的過程中,請判斷的值及直線 與直線的位置關(guān)系,并說明理由;

3)拓展運用

,,在旋轉(zhuǎn)過程中,當,,三點在同一直線上時,請直接寫出此時線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘗試探究

如圖-,在△ABC中,∠C=90°,∠A=30°,點E、F分別是BC、AC邊上的點,且EF//BC.

的值為 ;直線與直線的位置關(guān)系為 ;

類比延伸

如圖,若將圖中的繞點順時針旋轉(zhuǎn),連接,則在旋轉(zhuǎn)的過程中,請判斷的值及直線與直線的位置關(guān)系,并說明理由;

拓展運用

,在旋轉(zhuǎn)過程中,當三點在同一直線上時,請直接寫出此時線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90°,BC = 3,AC = 4,點D為邊AB上一點.將△BCD沿直線CD翻折,點B落在點E處,聯(lián)結(jié)AE.如果AE // CD,那么BE =________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風景.大橋主體工程隧道的東、西兩端各設(shè)置了一個海中人工島,來銜接橋梁和海底隧道西人工島上的A點和東人工島上的B點間的距離約為5.6千米,點C是與西人工島相連的大橋上的一點,A,BC在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達P點時觀測兩個人工島,分別測得與觀光船航向的夾角∠DPA=18°,∠DPB=53°,求此時觀光船到大橋AC段的距離的長

參考數(shù)據(jù):°,°°,°,°,°

查看答案和解析>>

同步練習冊答案