【題目】如圖,點IRtABC的內(nèi)心,∠C90°,AC3,BC4,將∠ACB平移使其頂點CI重合,兩邊分別交ABDE,則IDE的周長為(  )

A.3B.4C.5D.7

【答案】C

【解析】

連接AI、BI,根據(jù)三角形的內(nèi)心的性質(zhì)可得∠CAI=∠BAI,再根據(jù)平移的性質(zhì)得到∠CAI=∠AID,ADDI,同理得到BEEI,即可解答.

連接AI、BI,

∵∠C90°,AC3,BC4

AB5

∵點IABC的內(nèi)心,

AI平分∠CAB

∴∠CAI=∠BAI,

由平移得:ACDI,

∴∠CAI=∠AID,

∴∠BAI=∠AID,

ADDI,

同理可得:BEEI,

∴△DIE的周長=DE+DI+EIDE+AD+BEAB5

故選C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,為線段上的一個動點,分別以,為邊在的同側(cè)作菱形和菱形.點,在一條直線上,,、分別是對角線的中點.當點在線段上移動時,點、之間的距離最短為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某飛機場東西方向的地面 l 上有一長為 1km 的飛機跑道 MN(如圖),在跑道 MN的正西端 14.5 千米處有一觀察站 A.某時刻測得一架勻速直線降落的飛機位于點 A 的北偏西30°,且與點 A 相距 15 千米的 B 處;經(jīng)過 1 分鐘,又測得該飛機位于點 A 的北偏東 60°,且與點 A 相距 5千米的 C 處.

1)該飛機航行的速度是多少千米/小時?(結(jié)果保留根號)

2)如果該飛機不改變航向繼續(xù)航行,那么飛機能否降落在跑道 MN 之間?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,與點的同側(cè),且

1)如圖1,點不與點重合,連結(jié)于點.設關(guān)于的函數(shù)解析式,寫出自變量的取值范圍;

2)是否存在點,使相似,若存在,求的長;若不存在,請說明理由;

3)如圖2,過點垂足為.將以點為圓心,為半徑的圓記為.若點上點的距離的最小值為,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在每個小正方形的邊長為1的網(wǎng)格中,△ABC的頂點A、B、C均在格點上,點DAC邊上的一點.

1)線段AC的長為 

2)在如圖所示的網(wǎng)格中,AM是△ABC的角平分線,在AM上求一點P,使CP+DP的值最小,請用無刻度的直尺,畫出AM和點P,并簡要說明AM和點P的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場用36000元購進甲、乙兩種商品,銷售完后共獲利6000元.其中甲種商品每件進價120元,售價138元;乙種商品每件進價100元,售價120元.

1)該商場購進甲、乙兩種商品各多少件?

2)商場第二次以原進價購進甲、乙兩種商品,購進乙種商品的件數(shù)不變,而購進甲種商品的件數(shù)是第一次的2倍,甲種商品按原售價出售,而乙種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于8160元,乙種商品最低售價為每件多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB120°,連接AB,以OA為直徑作半圓CAB于點D,若OA4,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備購買若干臺型電腦和型打印機.如果購買1型電腦,2型打印機,一共需要花費6200元;如果購買2型電腦,1型打印機,一共需要花費7900元.

1)求每臺型電腦和每臺型打印機的價格分別是多少元?

2)如果學校購買型電腦和型打印機的預算費用不超過20000元,并且購買型打印機的臺數(shù)要比購買型電腦的臺數(shù)多1臺,那么該學校至多能購買多少臺型打印機?

查看答案和解析>>

同步練習冊答案