【題目】如圖,C是AB的中點(diǎn),D是BE的中點(diǎn),
(1)AB=4cm,BE=3cm,則CD=____________cm;
(2)AB=4cm,DE=2cm,則AE=____________cm;
(3)AB=4cm,BE=2cm,則AD=____________cm;
【答案】 8 5
【解析】
(1)根據(jù)中點(diǎn)的性質(zhì)求得CB=AB,BD=BE,根據(jù)等量關(guān)系即可得到CD的長(zhǎng)度
(2)根據(jù)中點(diǎn)的性質(zhì)求得BE=2BD,再根據(jù)AB+BE即可求出AE的長(zhǎng)度;
(3)根據(jù)中點(diǎn)的性質(zhì)求得BD=BE,再根據(jù)AB+BD即可求出AD的長(zhǎng)度.
(1)∵C是AB的中點(diǎn),D是BE的中點(diǎn),
∴CB=AB,BD=BE,
∵AB=4cm,BE=3cm,
∴CB=2cm,BD=cm,
∴CD=CB+BD=2+=cm;
(2)∵D是BE的中點(diǎn),DE=2cm,
∴BE=2DE=4cm,
∴AE=AB+BE=4+4=8cm;
(3)∵D是BE的中點(diǎn),
∴BD=BE,
∵BE=2cm,
∴BD=1cm,
∴AD=AB+BD=4+1=5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一期間,甲、乙兩人分別騎自行車和摩托車從地出發(fā)前往地郊游,并以各自的速度勻速行駛,到達(dá)目的地停止,途中乙休息了一段時(shí)間,然后又繼續(xù)趕路.甲、乙兩人各自行駛的路程與所用時(shí)間之間的函數(shù)圖象如圖所示.
(1)甲騎自行車的速度是_____.
(2)求乙休息后所行的路程與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)為了保證及時(shí)聯(lián)絡(luò),甲、乙兩人在第一次相遇時(shí)約定此后兩人之間的路程不超過.甲、乙兩人是否符合約定,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC中,BC=6,D、E分別在BC、AC上,且DE∥AC,MN是△BDE的中位線.將線段DE從BD=2處開始向AC平移,當(dāng)點(diǎn)D與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),則在運(yùn)動(dòng)過程中線段MN所掃過的區(qū)域面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車廠一周計(jì)劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn) 輛;
(2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;
(3)該廠實(shí)行計(jì)劃工資制,每輛車元,超額完成任務(wù)每輛獎(jiǎng)元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,AD平分交BC于點(diǎn)D,F為AD上一點(diǎn),且,BF的延長(zhǎng)線交AC于點(diǎn)E.
備用圖
(1)求證:;
(2)若,,,求DF的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.
(1)如圖①,點(diǎn)A是FG的中點(diǎn),FG∥BC,將矩形DEFG向下平移,直到DE與BC重合為止.要研究矩形DEFG與△ABC重疊部分的面積,就要進(jìn)行分類討論,你認(rèn)為如何進(jìn)行分類,寫出你的分類方法(無(wú)需求重疊部分的面積).
(2)如圖②,點(diǎn)B與F重合,E、B、C在同一直線上,將矩形DEFG向右平移,直到點(diǎn)E與C重合為止.設(shè)矩形DEFG與△ABC重疊部分的面積為y,平移的距離為x.
① 求y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
② 在給定的平面直角坐標(biāo)系中畫出y與x的大致圖象,并在圖象上標(biāo)注出關(guān)鍵點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察如圖圖形,把一個(gè)三角形分別連接其三邊中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1),對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,……,據(jù)此解答下面的問題
(1)填寫下表:
圖形 | 挖去三角形的個(gè)數(shù) |
圖形1 | 1 |
圖形2 | 1+3 |
圖形3 | 1+3+9 |
圖形4 |
|
(2)根據(jù)這個(gè)規(guī)律,求圖n中挖去三角形的個(gè)數(shù)wn;(用含n的代數(shù)式表示)
(3)若圖n+1中挖去三角形的個(gè)數(shù)為wn+1,求wn+1﹣Wn
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a,b,A,B兩點(diǎn)之間的距離表示為|AB|
當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),設(shè)點(diǎn)A在原點(diǎn),如圖①|AB|=|OB|=|b|=|a﹣b|
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
(1)如圖②,點(diǎn)A,B都在原點(diǎn)的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2)如圖③,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|
(3)如圖④,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|
綜上所述,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|a﹣b|
請(qǐng)用上面的知識(shí)解答下面的問題:
(1)數(shù)軸上表示﹣2和﹣4的兩點(diǎn)之間的距離是 ,數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是 .
(2)數(shù)軸上表示x和﹣1的兩點(diǎn)A和B之間的距離是 ,如果|AB|=2,那么x為 .
(3)當(dāng)|x+1|+|x﹣2|=5時(shí)的整數(shù)x的值 .
(4)當(dāng)|x+1|+|x﹣2|取最小值時(shí),相應(yīng)的x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,A、O兩點(diǎn)的坐標(biāo)分別為(2,0),(0,0),點(diǎn)P在正比例函數(shù)y=x(x>0)圖象上運(yùn)動(dòng),則滿足△PAO為等腰三角形的P點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com